scholarly journals Inhomogeneous universe from group field theory condensate

2019 ◽  
Vol 2019 (02) ◽  
pp. 013-013 ◽  
Author(s):  
Steffen Gielen
2014 ◽  
Vol 330 (2) ◽  
pp. 581-637 ◽  
Author(s):  
Sylvain Carrozza ◽  
Daniele Oriti ◽  
Vincent Rivasseau

2021 ◽  
pp. 121-165
Author(s):  
Adrian Tanasa

This chapter is the first chapter of the book dedicated to the study of the combinatorics of various quantum gravity approaches. After a brief introductory section to quantum gravity, we shortly mention the main candidates for a quantum theory of gravity: string theory, loop quantum gravity, and group field theory (GFT), causal dynamical triangulations, matrix models. The next sections introduce some GFT models such as the Boulatov model, the colourable and the multi-orientable model. The saddle point method for some specific GFT Feynman integrals is presented in the fifth section. Finally, some algebraic combinatorics results are presented: definition of an appropriate Conne–Kreimer Hopf algebra describing the combinatorics of the renormalization of a certain tensor GFT model (the so-called Ben Geloun–Rivasseau model) and the use of its Hochschild cohomology for the study of the combinatorial Dyson–Schwinger equation of this specific model.


Universe ◽  
2019 ◽  
Vol 5 (5) ◽  
pp. 107 ◽  
Author(s):  
Marco de Cesare

We illustrate a general reconstruction procedure for mimetic gravity. Focusing on a bouncing cosmological background, we derive general properties that must be satisfied by the function f(□ϕ) implementing the limiting curvature hypothesis. We show how relevant physical information can be extracted from power-law expansions of f in different regimes, corresponding e.g., to the very early universe or to late times. Our results are then applied to two specific models reproducing the cosmological background dynamics obtained in group field theory and in loop quantum cosmology, and we discuss the possibility of using this framework as providing an effective field theory description of quantum gravity. We study the evolution of anisotropies near the bounce, and discuss instabilities of scalar perturbations. Furthermore, we provide two equivalent formulations of mimetic gravity: one in terms of an effective fluid with exotic properties, the other featuring two distinct time-varying gravitational “constants” in the cosmological equations.


Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 211 ◽  
Author(s):  
Goffredo Chirco

This work is meant as a review summary of a series of recent results concerning the derivation of a holographic entanglement entropy formula for generic open spin network states in the group field theory (GFT) approach to quantum gravity. The statistical group-field computation of the Rényi entropy for a bipartite network state for a simple interacting GFT is reviewed, within a recently proposed dictionary between group field theories and random tensor networks, and with an emphasis on the problem of a consistent characterisation of the entanglement entropy in the GFT second quantisation formalism.


Universe ◽  
2019 ◽  
Vol 5 (2) ◽  
pp. 41 ◽  
Author(s):  
Bekir Baytaş ◽  
Martin Bojowald ◽  
Sean Crowe

The paradigmatic models often used to highlight cosmological features of loop quantum gravity and group field theory are shown to be equivalent, in the sense that they are different realizations of the same model given by harmonic cosmology. The loop version of harmonic cosmology is a canonical realization, while the group-field version is a bosonic realization. The existence of a large number of bosonic realizations suggests generalizations of models in group field cosmology.


Sign in / Sign up

Export Citation Format

Share Document