scholarly journals Holographic Entanglement in Group Field Theory

Universe ◽  
2019 ◽  
Vol 5 (10) ◽  
pp. 211 ◽  
Author(s):  
Goffredo Chirco

This work is meant as a review summary of a series of recent results concerning the derivation of a holographic entanglement entropy formula for generic open spin network states in the group field theory (GFT) approach to quantum gravity. The statistical group-field computation of the Rényi entropy for a bipartite network state for a simple interacting GFT is reviewed, within a recently proposed dictionary between group field theories and random tensor networks, and with an emphasis on the problem of a consistent characterisation of the entanglement entropy in the GFT second quantisation formalism.

2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
Tadashi Takayanagi ◽  
Takahiro Uetoko

Abstract In this paper we provide a Chern-Simons gravity dual of a two dimensional conformal field theory on a manifold with boundaries, so called boundary conformal field theory (BCFT). We determine the correct boundary action on the end of the world brane in the Chern-Simons gauge theory. This reproduces known results of the AdS/BCFT for the Einstein gravity. We also give a prescription of calculating holographic entanglement entropy by employing Wilson lines which extend from the AdS boundary to the end of the world brane. We also discuss a higher spin extension of our formulation.


2016 ◽  
Vol 31 (12) ◽  
pp. 1650073
Author(s):  
Davood Momeni ◽  
Muhammad Raza ◽  
Ratbay Myrzakulov

A metric is proposed to explore the noncommutative form of the anti-de Sitter (AdS) space due to quantum effects. It has been proved that the noncommutativity in AdS space induces a single component gravitoelectric field. The holographic Ryu–Takayanagi (RT) algorithm is then applied to compute the entanglement entropy (EE) in dual CFT2. This calculation can be exploited to compute ultraviolet–infrared (UV–IR) cutoff dependent central charge of the certain noncommutative CFT2. This noncommutative computation of the EE can be interpreted in the form of the surface/state correspondence. We have shown that noncommutativity increases the dimension of the effective Hilbert space of the dual conformal field theory (CFT).


2012 ◽  
Vol 12 (3&4) ◽  
pp. 346-354
Author(s):  
Joseph M. Landsburg ◽  
Yang Qi ◽  
Ke Ye

We answer a question of L. Grasedyck that arose in quantum information theory, showing that the limit of tensors in a space of tensor network states need not be a tensor network state. We also give geometric descriptions of spaces of tensor networks states corresponding to trees and loops. Grasedyck's question has a surprising connection to the area of Geometric Complexity Theory, in that the result is equivalent to the statement that the boundary of the Mulmuley-Sohoni type variety associated to matrix multiplication is strictly larger than the projections of matrix multiplication (and re-expressions of matrix multiplication and its projections after changes of bases). Tensor Network States are also related to graphical models in algebraic statistics.


Open Physics ◽  
2011 ◽  
Vol 9 (4) ◽  
Author(s):  
R. Dowdall

AbstractGroup field theories whose Feynman diagrams describe 3d gravity with a varying configuration of Wilson loop observables and 3d gravity with volume observables at each vertex are defined. The volume observables are created by the usual spin network grasping operators which require the introduction of vector fields on the group. We then use this to define group field theories that give a previously defined spin foam model for fermion fields coupled to gravity, and the simpler “quenched” approximation, by using tensor fields on the group. The group field theory naturally includes the sum over fermionic loops at each order of the perturbation theory.


2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Chia-Jui Chou ◽  
Bo-Han Lin ◽  
Bin Wang ◽  
Yi Yang

Abstract We study entanglement entropy inequalities in boundary conformal field theory (BCFT) by holographic correspondence. By carefully classifying all the configurations for different phases, we prove the strong subadditiviy and the monogamy of mutual information for holographic entanglement entropy in BCFT at both zero and finite temperatures.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Xi Dong ◽  
Xiao-Liang Qi ◽  
Zhou Shangnan ◽  
Zhenbin Yang

Abstract Entanglement entropy, or von Neumann entropy, quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this paper, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a replica calculation. The replicated theory is defined as a gravitational path integral with multiple copies of the original boundary conditions, with a co-dimension-2 brane at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. We show that, in absence of a large boundary like in AdS space case, it is essential to introduce ancilla that couples to the original system, in order for correctly characterizing quantum states and correlation functions in the random tensor network. Using the superdensity operator formalism, we study the system with ancilla and show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe.


2021 ◽  
Vol 81 (8) ◽  
Author(s):  
M. R. Setare ◽  
M. Koohgard

AbstractPreviously we have studied the Generalized Minimal Massive Gravity (GMMG) in asymptotically $$AdS_3$$ A d S 3 background, and have shown that the theory is free of negative-energy bulk modes. Also we have shown GMMG avoids the aforementioned “bulk-boundary unitarity clash”. Here instead of $$AdS_3$$ A d S 3 space we consider asymptotically flat space, and study this model in the flat limit. The dual field theory of GMMG in the flat limit is a $$BMS_3$$ B M S 3 invariant field theory, dubbed (BMSFT) and we have BMS algebra asymptotically instead of Virasoro algebra. In fact here we present an evidence for this claim. Entanglement entropy of GMMG is calculated in the background in the flat null infinity. Our evidence for mentioned claim is the result for entanglement entropy in filed theory side and in the bulk (in the gravity side). At first using Cardy formula and Rindler transformation, we calculate entanglement entropy of BMSFT in three different cases. Zero temperature on the plane and on the cylinder, and non-zero temperature case. Then we obtain the entanglement entropy in the bulk. Our results in gravity side are exactly in agreement with field theory calculations.


2020 ◽  
Vol 37 (9) ◽  
pp. 095011 ◽  
Author(s):  
Goffredo Chirco ◽  
Alex Goeßmann ◽  
Daniele Oriti ◽  
Mingyi Zhang

Sign in / Sign up

Export Citation Format

Share Document