random tensor
Recently Published Documents


TOTAL DOCUMENTS

39
(FIVE YEARS 15)

H-INDEX

12
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Xi Dong ◽  
Xiao-Liang Qi ◽  
Michael Walter

Abstract Since the work of Ryu and Takayanagi, deep connections between quantum entanglement and spacetime geometry have been revealed. The negative eigenvalues of the partial transpose of a bipartite density operator is a useful diagnostic of entanglement. In this paper, we discuss the properties of the associated entanglement negativity and its Rényi generalizations in holographic duality. We first review the definition of the Rényi negativities, which contain the familiar logarithmic negativity as a special case. We then study these quantities in the random tensor network model and rigorously derive their large bond dimension asymptotics. Finally, we study entanglement negativity in holographic theories with a gravity dual, where we find that Rényi negativities are often dominated by bulk solutions that break the replica symmetry. From these replica symmetry breaking solutions, we derive general expressions for Rényi negativities and their special limits including the logarithmic negativity. In fixed-area states, these general expressions simplify dramatically and agree precisely with our results in the random tensor network model. This provides a concrete setting for further studying the implications of replica symmetry breaking in holography.


2021 ◽  
pp. 178-208
Author(s):  
Adrian Tanasa

In the first section we give a briefly presentation of the U(N)D-invariant tensor models (N being again the size of the tensor, and D being the dimension). The next section is then dedicated to the analysis of the Dyson–Schwinger equations (DSE) in the large N limit. These results are essential to implement the double scaling limit mechanism of the DSEs, which is done in the third section. The main result of this chapter is the doubly-scaled 2-point function for a model with generic melonic interactions. However, several assumptions on the large N scaling of cumulants are made along the way. They are proved using various combinatorial methods.


2021 ◽  
pp. 260-290
Author(s):  
Adrian Tanasa

In this chapter, we first review the Sachdev–Ye–Kitaev (SYK) model, which is a quantum mechanical model of N fermions. The model is a quenched model, which means that the coupling constant is a random tensor with Gaussian distribution. The SYK model is dominated in the large N limit by melonic graphs, in the same way the tensor models presented in the previous three chapters are dominated by melonic graphs. We then present a purely graph theoretical proof of the melonic dominance of the SYK model. It is this property which led E. Witten to relate the SYK model to the coloured tensor model. In the rest of the chapter we deal with the so-called coloured SYK model, which is a particular case of the generalisation of the SYK model introduced by D. Gross and V. Rosenhaus. We first analyse in detail the leading order and next-to-leading order vacuum, two- and four-point Feynman graphs of this model. We then exhibit a thorough asymptotic combinatorial analysis of the Feynman graphs at an arbitrary order in the large N expansion. We end the chapter by an analysis of the effect of non-Gaussian distribution for the coupling of the model.


2021 ◽  
pp. 234-259
Author(s):  
Adrian Tanasa

We define in this chapter a class of tensor models endowed with O(N)3-invariance, N being again the size of the tensor. This allows to generate, via the usual QFT perturbative expansion, a class of Feynman tensor graphs which is strictly larger than the class of Feynman graphs of both the multi-orientable model and the U(N)3-invariant models treated in the previous two chapters. We first exhibit the existence of a large N expansion for such a model with general interactions (non-necessary quartic). We then focus on the quartic model and we identify the leading order and next-to-leading Feynman graphs of the large N expansion. Finally, we prove the existence of a critical regime and we compute the so-called critical exponents. This is achieved through the use of various analytic combinatorics techniques.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Hewei Frederic Jia ◽  
Mukund Rangamani

Abstract We illustrate the ideas of bulk reconstruction in the context of random tensor network toy models of holography. Specifically, we demonstrate how the Petz reconstruction map works to obtain bulk operators from the boundary data by exploiting the replica trick. We also take the opportunity to comment on the differences between coarse-graining and random projections.


2020 ◽  
Vol 2020 (10) ◽  
Author(s):  
Xi Dong ◽  
Xiao-Liang Qi ◽  
Zhou Shangnan ◽  
Zhenbin Yang

Abstract Entanglement entropy, or von Neumann entropy, quantifies the amount of uncertainty of a quantum state. For quantum fields in curved space, entanglement entropy of the quantum field theory degrees of freedom is well-defined for a fixed background geometry. In this paper, we propose a generalization of the quantum field theory entanglement entropy by including dynamical gravity. The generalized quantity named effective entropy, and its Renyi entropy generalizations, are defined by analytic continuation of a replica calculation. The replicated theory is defined as a gravitational path integral with multiple copies of the original boundary conditions, with a co-dimension-2 brane at the boundary of region we are studying. We discuss different approaches to define the region in a gauge invariant way, and show that the effective entropy satisfies the quantum extremal surface formula. When the quantum fields carry a significant amount of entanglement, the quantum extremal surface can have a topology transition, after which an entanglement island region appears. Our result generalizes the Hubeny-Rangamani-Takayanagi formula of holographic entropy (with quantum corrections) to general geometries without asymptotic AdS boundary, and provides a more solid framework for addressing problems such as the Page curve of evaporating black holes in asymptotic flat spacetime. We apply the formula to two example systems, a closed two-dimensional universe and a four-dimensional maximally extended Schwarzchild black hole. We discuss the analog of the effective entropy in random tensor network models, which provides more concrete understanding of quantum information properties in general dynamical geometries. We show that, in absence of a large boundary like in AdS space case, it is essential to introduce ancilla that couples to the original system, in order for correctly characterizing quantum states and correlation functions in the random tensor network. Using the superdensity operator formalism, we study the system with ancilla and show how quantum information in the entanglement island can be reconstructed in a state-dependent and observer-dependent map. We study the closed universe (without spatial boundary) case and discuss how it is related to open universe.


Sign in / Sign up

Export Citation Format

Share Document