scholarly journals Constraining the host galaxy halos of massive black holes from LISA event rates

2020 ◽  
Vol 2020 (11) ◽  
pp. 055-055
Author(s):  
Hamsa Padmanabhan ◽  
Abraham Loeb
2020 ◽  
Vol 497 (4) ◽  
pp. 5292-5308 ◽  
Author(s):  
Paul Torrey ◽  
Philip F Hopkins ◽  
Claude-André Faucher-Giguère ◽  
Daniel Anglés-Alcázar ◽  
Eliot Quataert ◽  
...  

ABSTRACT Accreting black holes can drive fast and energetic nuclear winds that may be an important feedback mechanism associated with active galactic nuclei (AGN). In this paper, we implement a scheme for capturing feedback from these fast nuclear winds and examine their impact in simulations of isolated disc galaxies. Stellar feedback is modelled using the Feedback In Realistic Environments (fire) physics and produces a realistic multiphase interstellar medium (ISM). We find that AGN winds drive the formation of a low-density, high-temperature central gas cavity that is broadly consistent with analytic model expectations. The effects of AGN feedback on the host galaxy are a strong function of the wind kinetic power and momentum. Low- and moderate-luminosity AGN do not have a significant effect on their host galaxy: the AGN winds inefficiently couple to the ambient ISM and instead a significant fraction of their energy vents in the polar direction. For such massive black holes, accretion near the Eddington limit can have a dramatic impact on the host galaxy ISM: if AGN wind feedback acts for ≳20–30 Myr, the inner ∼1–10 kpc of the ISM is disrupted and the global galaxy star formation rate is significantly reduced. We quantify the properties of the resulting galaxy-scale outflows and find that the radial momentum in the outflow is boosted by a factor of ∼2–3 relative to that initially supplied in the AGN wind for strong feedback scenarios, decreasing below unity for less energetic winds. In contrast to observations, however, the outflows are primarily hot, with very little atomic or molecular gas. We conjecture that merging galaxies and high-redshift galaxies, which have more turbulent and thicker discs and very different nuclear gas geometries, may be even more disrupted by AGN winds than found in our simulations.


2009 ◽  
Vol 5 (S267) ◽  
pp. 262-262
Author(s):  
Javiera Guedes ◽  
Piero Madau ◽  
Lucio Mayer ◽  
Michael Kuhlen ◽  
Jürg Diemand ◽  
...  

AbstractThe coalescence of black hole binaries is a significant source of gravitational wave radiation. The typically asymmetric nature of this emission, which carries linear momentum, can result in the recoil of the black hole remnant with velocities in the range 100 < Vrecoil < 3750 km s−1. The detectability of recoiling massive black holes (MBH) as off-nuclear QSOs is tightly connected with the properties of the host galaxy, which determine the MBH's orbit and fuel reservoir. We present the results of N-body simulations of recoiling MBHs in high-resolution, non-axisymmetric potentials. We find that if the recoil velocities are high enough to reach regions of the galaxy dominated by the generally triaxial dark matter distribution, the return time is significantly extended when compared to a spherical distribution. We also perform simulations of recoiling MBHs traveling in gas merger remnants, where large amounts of gas have been funneled to the central regions, In this case, the MBHs remain within R<1 kpc from the center of the host even for high recoil velocities (Vrecoil = 1200 km s−1) due to the compactness of the remnant galaxy's nuclear disk. We discuss the implications of both scenarios for detectability.


2015 ◽  
Vol 11 (S319) ◽  
pp. 80-83 ◽  
Author(s):  
Xue-Bing Wu ◽  
Feige Wang ◽  
Xiaohui Fan ◽  
Weimin Yi ◽  
Wenwen Zuo ◽  
...  

AbstractThe existence of black holes with masses of about one billion solar masses in quasars at redshifts z > 6 presents significant challenges to theories of the formation and growth of black holes and the black hole/galaxy co-evolution in the early Universe. Here we report a recent discovery of an ultra-luminous quasar at redshift z = 6.30, which has an observed optical and near-infrared luminosity a few times greater than those of previously known z > 6 quasars. With near-infrared spectroscopy, we obtain a black hole mass of about 12 billion solar masses, which is well consistent with the mass derived by assuming an Eddington-limited accretion. This ultra-luminous quasar with at z > 6 provides a unique laboratory to the study of the mass assembly and galaxy formation around the most massive black holes at cosmic dawn. It raises further challenges to the black hole/galaxy co-evolution in the epoch of cosmic reionization because the black hole needs to grow much faster than the host galaxy.


2009 ◽  
Vol 5 (S267) ◽  
pp. 26-33 ◽  
Author(s):  
Marta Volonteri

AbstractMassive black holes (MBHs) are nowadays believed to reside in most local galaxies. Studies have also established a number of relations between the MBH mass and properties of the host galaxy such as bulge mass and velocity dispersion. These results suggest that central MBHs, while much less massive than their hosts (~ 0.1%), are linked to the evolution of galactic structure. When did it all start? In hierarchical cosmologies, a single big galaxy today can be traced back to the stage when it was split up in hundreds of smaller components. Did MBH seeds form with the same efficiency in small proto-galaxies, or did their formation have to await the buildup of substantial galaxies with deeper potential wells? I briefly review here some of the physical processes that are conducive to the evolution of the massive black hole population. I will discuss black hole formation processes for “seed” black holes that are likely to take place at early cosmic epochs, and possible observational tests of these scenarios.


2020 ◽  
Vol 58 (1) ◽  
pp. 27-97 ◽  
Author(s):  
Kohei Inayoshi ◽  
Eli Visbal ◽  
Zoltán Haiman

The existence of ∼109M⊙ supermassive black holes (SMBHs) within the first billion years of the Universe has stimulated numerous ideas for the prompt formation and rapid growth of black holes (BHs) in the early Universe. Here, we review ways in which the seeds of massive BHs may have first assembled, how they may have subsequently grown as massive as ∼109M⊙, and how multimessenger observations could distinguish between different SMBH assembly scenarios. We conclude the following: ▪  The ultrarare ∼109 M⊙ SMBHs represent only the tip of the iceberg. Early BHs likely fill a continuum from the stellar-mass (∼10M⊙) to the supermassive (∼109) regimes, reflecting a range of initial masses and growth histories. ▪  Stellar-mass BHs were likely left behind by the first generation of stars at redshifts as high as ∼30, but their initial growth typically was stunted due to the shallow potential wells of their host galaxies. ▪  Conditions in some larger, metal-poor galaxies soon became conducive to the rapid formation and growth of massive seed holes, via gas accretion and by mergers in dense stellar clusters. ▪  BH masses depend on the environment (such as the number and properties of nearby radiation sources and the local baryonic streaming velocity) and on the metal enrichment and assembly history of the host galaxy. ▪  Distinguishing between assembly mechanisms will be difficult, but a combination of observations by the Laser Interferometer Space Antenna (probing massive BH growth via mergers) and by deep multiwavelength electromagnetic observations (probing growth via gas accretion) is particularly promising.


2012 ◽  
Vol 2012 ◽  
pp. 1-11 ◽  
Author(s):  
Roberto Decarli ◽  
Renato Falomo ◽  
Jari K. Kotilainen ◽  
Tomi Hyvönen ◽  
Michela Uslenghi ◽  
...  

TheMBH-Mhostrelation in quasars has been probed only in a limited parameter space, namely, atMBH∼109 M⊙andMhost∼1012 M⊙. Here we present a study of 26 quasars laying in the low-mass end of the relation, down toMBH∼107 M⊙. We selected quasars from the SDSS and HST-FOS archives, requiring modestMBH(as derived through the virial paradigm). We imaged our sources inHband from the Nordic Optical Telescope. The quasar host galaxies have been resolved in 25 out of 26 observed targets. Host galaxy luminosities and stellar masses are computed, under reasonable assumptions on their star formation histories. Combining these results with those from our previous studies, we manage to extend the sampled parameter space of theMBH-Mhostrelation in quasars. The relation holds over 2 dex in both the parameters. For the first time, we are able to measure the slope of theMBH-Mhostrelation in quasars. We find that it is consistent with the linear case (similarly to what observed in quiescent galaxies). We do not find any evidence of a population of massive black holes lying below the relation.


2009 ◽  
Vol 5 (S267) ◽  
pp. 34-39
Author(s):  
J. K. Kotilainen ◽  
R. Decarli ◽  
R. Falomo ◽  
A. Treves ◽  
M. Labita ◽  
...  

AbstractWe study the evolution of the MBH/Mhost relation up to z = 3 for a sample of 96 quasars with known host galaxy luminosities. Black hole masses are estimated assuming virial equilibrium in the broad-line regions, while the host galaxy masses are inferred from their luminosities. With this data, we are able to pin down the evolution of the MBH/Mhost relation over 85% of the age of the universe. While the MBH/Lhost relation remains nearly unchanged, taking into account the aging of the stellar population, we find that the MBH/Mhost ratio (Γ) increases by a factor ~ 7 from z = 0 to z = 3. We show that the evolution of Γ is independent of radio loudness and quasar luminosity. We propose that the most massive black holes, in their quasar phase at high-redshift, become extremely rare objects in host galaxies of similar mass in the local universe.


Science ◽  
2019 ◽  
Vol 363 (6426) ◽  
pp. 531-534 ◽  
Author(s):  
Dheeraj R. Pasham ◽  
Ronald A. Remillard ◽  
P. Chris Fragile ◽  
Alessia Franchini ◽  
Nicholas C. Stone ◽  
...  

The tidal forces close to massive black holes can rip apart stars that come too close to them. As the resulting stellar debris spirals toward the black hole, the debris heats up and emits x-rays. We report observations of a stable 131-second x-ray quasi-periodic oscillation from the tidal disruption event ASASSN-14li. Assuming the black hole mass indicated by host galaxy scaling relations, these observations imply that the periodicity originates from close to the event horizon and that the black hole is rapidly spinning. Our findings demonstrate that tidal disruption events can generate quasi-periodic oscillations that encode information about the physical properties of their black holes.


Sign in / Sign up

Export Citation Format

Share Document