scholarly journals Nonthermal element abundances at astrophysical shocks

2021 ◽  
Vol 2021 (01) ◽  
pp. 049-049
Author(s):  
Björn Eichmann ◽  
Jörg P. Rachen
1988 ◽  
Vol 132 ◽  
pp. 501-506
Author(s):  
C. Sneden ◽  
C. A. Pilachowski ◽  
K. K. Gilroy ◽  
J. J. Cowan

Current observational results for the abundances of the very heavy elements (Z>30) in Population II halo stars are reviewed. New high resolution, low noise spectra of many of these extremely metal-poor stars reveal general consistency in their overall abundance patterns. Below Galactic metallicities of [Fe/H] Ã −2, all of the very heavy elements were manufactured almost exclusively in r-process synthesis events. However, there is considerable star-to-star scatter in the overall level of very heavy element abundances, indicating the influence of local supernovas on element production in the very early, unmixed Galactic halo. The s-process appears to contribute substantially to stellar abundances only in stars more metal-rich than [Fe/H] Ã −2.


1999 ◽  
Vol 511 (2) ◽  
pp. 639-659 ◽  
Author(s):  
Yuri I. Izotov ◽  
Trinh X. Thuan

2021 ◽  
Vol 502 (4) ◽  
pp. 5508-5527
Author(s):  
Taniya Parikh ◽  
Daniel Thomas ◽  
Claudia Maraston ◽  
Kyle B Westfall ◽  
Brett H Andrews ◽  
...  

ABSTRACT We derive ages, metallicities, and individual element abundances of early- and late-type galaxies (ETGs and LTGs) out to 1.5 Re. We study a large sample of 1900 galaxies spanning 8.6–11.3 log M/M⊙ in stellar mass, through key absorption features in stacked spectra from the SDSS-IV/MaNGA survey. We use mock galaxy spectra with extended star formation histories to validate our method for LTGs and use corrections to convert the derived ages into luminosity- and mass-weighted quantities. We find flat age and negative metallicity gradients for ETGs and negative age and negative metallicity gradients for LTGs. Age gradients in LTGs steepen with increasing galaxy mass, from −0.05 ± 0.11 log Gyr/Re for the lowest mass galaxies to −0.82 ± 0.08 log Gyr/Re for the highest mass ones. This strong gradient–mass relation has a slope of −0.70 ± 0.18. Comparing local age and metallicity gradients with the velocity dispersion σ within galaxies against the global relation with σ shows that internal processes regulate metallicity in ETGs but not age, and vice versa for LTGs. We further find that metallicity gradients with respect to local σ show a much stronger dependence on galaxy mass than radial metallicity gradients. Both galaxy types display flat [C/Fe] and [Mg/Fe], and negative [Na/Fe] gradients, whereas only LTGs display gradients in [Ca/Fe] and [Ti/Fe]. ETGs have increasingly steep [Na/Fe] gradients with local σ reaching 6.50 ± 0.78 dex/log km s−1 for the highest masses. [Na/Fe] ratios are correlated with metallicity for both galaxy types across the entire mass range in our sample, providing support for metallicity-dependent supernova yields.


1960 ◽  
Vol 10 ◽  
pp. 677-679 ◽  

1. p. SELINOV: Anomalous abundances of Te and Xe isotopes in meteorites and in the Earth permit us to draw some conclusions concerning the age of uranium and the processes of nucleogenesis. According to the estimate by Hoyle the amount of 254Cf disintegrated during a super-nova outburst is of the order of io29 g or io~4 of the stellar mass. According to the fission-yield curve the isotopes of Te comprise about 1 % of the mass of fission products. The abundances of Te 128-131 are anomalously high, due to the fission of heavy nuclei. The element abundances do not permit us to draw any conclusions about the r-process. The isotopes of Te and Xe with even mass numbers give evidence in favour of the r-process (anomalously high abundances). But the amount of Te in meteorites and in Earth is about 1000 times less than it should be if formed during the outburst. The Sikhote- Alin meteorite shows the same anomaly. We may conclude that the heavy elements of the solar system have been formed not in a single super-nova outburst, but as a result of mixing from the totality of outbursts. According to Hoyle, this gives a definite estimate for the age of uranium.


2018 ◽  
Vol 619 ◽  
pp. A143 ◽  
Author(s):  
G. Guiglion ◽  
P. de Laverny ◽  
A. Recio-Blanco ◽  
N. Prantzos

Context. The chemical evolution of neutron capture elements in the Milky Way disc is still a matter of debate. There is a lack of statistically significant catalogues of such element abundances, especially those of the r-process. Aims. We aim to understand the chemical evolution of r-process elements in Milky Way disc. We focus on three pure r-process elements Eu, Gd, and Dy. We also consider a pure s-process element, Ba, in order to disentangle the different nucleosynthesis processes. Methods. We take advantage of high-resolution FEROS, HARPS, and UVES spectra from the ESO archive in order to perform a homogeneous analysis on 6500 FGK Milky Way stars. The chemical analysis is performed thanks to the automatic optimization pipeline GAUGUIN. We present abundances of Ba (5057 stars), Eu (6268 stars), Gd (5431 stars), and Dy (5479 stars). Based on the [α/Fe] ratio determined previously by the AMBRE Project, we chemically characterize the thin and the thick discs, and a metal-rich α-rich population. Results. First, we find that the [Eu/Fe] ratio follows a continuous sequence from the thin disc to the thick disc as a function of the metallicity. Second, in thick disc stars, the [Eu/Ba] ratio is found to be constant, while the [Gd/Ba] and [Dy/Ba] ratios decrease as a function of the metallicity. These observations clearly indicate a different nucleosynthesis history in the thick disc between Eu and Gd–Dy. The [r/Fe] ratio in the thin disc is roughly around +0.1 dex at solar metallicity, which is not the case for Ba. We also find that the α-rich metal-rich stars are also enriched in r-process elements (like thick disc stars), but their [Ba/Fe] is very different from thick disc stars. Finally, we find that the [r/α] ratio tends to decrease with metallicity, indicating that supernovae of different properties probably contribute differently to the synthesis of r-process elements and α-elements. Conclusions. We provide average abundance trends for [Ba/Fe] and [Eu/Fe] with rather small dispersions, and for the first time for [Gd/Fe] and [Dy/Fe]. This data may help to constrain chemical evolution models of Milky Way r- and s-process elements and the yields of massive stars. We emphasize that including yields of neutron-star or black hole mergers is now crucial if we want to quantitatively compare observations to Galactic chemical evolution models.


1993 ◽  
Vol 138 ◽  
pp. 192-196
Author(s):  
L.S. Lyubimkov ◽  
T.M. Rachkovskaya

Duplicity is a very widespread phenomenon among Am-stars. For instance, Abt (1961) investigating 25 such stars found out that 22 of them are spectroscopic binaries. However this important phenomenon is ignored usually in chemical composition investigations of Am-stars. Consequently some “mean” element abundances are determined, which can noticeably differ from real abundances in atmospheres of components. Moreover false chemical anomalies can appear, as shown by the theoretical modelling of spectra of binary stars (Lyubimkov, 1989, 1992). Meanwhile accurate data on chemical composition of Am-stars must be considered as observational test for any hypothesis suggested for explanation of these objects.


Sign in / Sign up

Export Citation Format

Share Document