scholarly journals Universal gravitational-wave signatures from heavy new physics in the electroweak sector

2021 ◽  
Vol 2021 (05) ◽  
pp. 006
Author(s):  
Astrid Eichhorn ◽  
Johannes Lumma ◽  
Jan M. Pawlowski ◽  
Manuel Reichert ◽  
Masatoshi Yamada
2019 ◽  
Vol 100 (4) ◽  
Author(s):  
Robert R. Caldwell ◽  
Tristan L. Smith ◽  
Devin G. E. Walker

2019 ◽  
Vol 209 ◽  
pp. 01045
Author(s):  
Fulvio Ricci

We review the present status of the Gravitational wave detectors on the Earth, focusing the attention on the present innovations and the longer term perspectives to improve their sensitivity. Then we conclude mentioning few potential searches of new Physics phenomena to be performed with these detectors and those of the third generation.


2015 ◽  
Vol 30 (06) ◽  
pp. 1541004 ◽  
Author(s):  
Ashutosh V. Kotwal ◽  
Heidi Schellman ◽  
Jadranka Sekaric

We summarize an extensive Tevatron (1984–2011) electroweak physics program that involves a variety of W and Z boson precision measurements. The relevance of these studies using single and associated gauge boson production to our understanding of the electroweak sector, quantum chromodynamics and searches for new physics is emphasized. We discuss the importance of the W boson mass measurement, the W/Z boson distributions and asymmetries, and diboson studies. We highlight the recent Tevatron measurements and prospects for the final Tevatron measurements.


Universe ◽  
2021 ◽  
Vol 7 (10) ◽  
pp. 380
Author(s):  
Kellie O’Neal-Ault ◽  
Quentin G. Bailey ◽  
Tyann Dumerchat  ◽  
Leïla Haegel ◽  
Jay Tasson

In this work, we review the effective field theory framework to search for Lorentz and CPT symmetry breaking during the propagation of gravitational waves. The article is written so as to bridge the gap between the theory of spacetime-symmetry breaking and the analysis of gravitational-wave signals detected by ground-based interferometers. The primary physical effects beyond General Relativity that we explore here are dispersion and birefringence of gravitational waves. We discuss their implementation in the open-source LIGO-Virgo algorithm library suite, and we discuss the statistical method used to perform a Bayesian inference of the posterior probability of the coefficients for symmetry-breaking. We present preliminary results of this work in the form of simulations of modified gravitational waveforms, together with sensitivity studies of the measurements of the coefficients for Lorentz and CPT violation. The findings show the high potential of gravitational wave sources across the sky to sensitively probe for these signals of new physics.


Author(s):  
Steven B. Giddings

A succinct summary is given of the problem of reconciling observation of black hole-like objects with quantum mechanics. If quantum black holes behave like subsystems, and also decay, their information must be transferred to their environments. Interactions that accomplish this with ‘minimal’ departure from a standard description are parametrized. Possible sensitivity of gravitational wave or very long baseline interferometric observations to these interactions is briefly outlined. This article is part of a discussion meeting issue ‘Topological avatars of new physics’.


2006 ◽  
Vol 21 (08n09) ◽  
pp. 1792-1804
Author(s):  
JON M. BUTTERWORTH

QCD is the accepted (that is, the effective) theory of the strong interaction; studies at colliders are no longer designed to establish this. Such studies can now be divided into two categories. The first involves the identification of observables which can be both measured and predicted at the level of a few percent. Such studies parallel those of the electroweak sector over the past fifteen years, and deviations from expectations would be a sign of new physics. These observables provide a firm "place to stand" from which to extend our understanding. This links to the second category of study, where one deliberately moves to regions in which the usual theoretical tools fail; here new approximations in QCD are developed to increase our portfolio of understood processes, and hence our sensitivity to new physics. Recent progress in both these aspects of QCD at colliders is discussed.


2020 ◽  
Vol 35 (28) ◽  
pp. 2030013
Author(s):  
Yee Chinn Yap

This review covers results at a centre-of-mass energy of [Formula: see text] TeV from the ATLAS experiment that have been published, or submitted for publication, up to April 2020. It summarizes results on the inclusive production cross-section measurements of boson pairs and of the electroweak production of diboson in association with two jets. The measurements either use the full integrated luminosity of 139 fb[Formula: see text] collected by the ATLAS detector at the LHC from 2015 to 2018, or a partial dataset of 36 fb[Formula: see text]. The inclusive production rates of diboson are studied to high precision. These measurements provide stringent tests of the electroweak sector of the Standard Model and allow search for new physics via anomalous triple and quartic gauge boson couplings.


2016 ◽  
Vol 31 (32) ◽  
pp. 1630058
Author(s):  
Tejinder Singh Virdee

Since 2010 there has been a rich harvest of results on standard model physics by the ATLAS and CMS experiments operating on the Large Hadron Collider. In the summer of 2012, a spectacular discovery was made by these experiments of a new, heavy particle. All the subsequently analysed data point strongly to the properties of this particle as those expected for the Higgs boson associated with the Brout–Englert–Higgs mechanism postulated to explain the spontaneous symmetry breaking in the electroweak sector, thereby explaining how elementary particles acquire mass. This article focuses on the CMS experiment, the technological challenges encountered in its construction, describing some of the physics results obtained so far, including the discovery of the Higgs boson, and searches for the widely anticipated new physics beyond the standard model, and peer into the future involving the high-luminosity phase of the LHC. This article is complementary to the one by Peter Jenni4 that focuses on the ATLAS experiment.


Sign in / Sign up

Export Citation Format

Share Document