Quantitative and qualitative evaluation of recovery process of a 1064 nm laser on laser-induced skin injury: in vivo experimental research

2019 ◽  
Vol 16 (11) ◽  
pp. 115604 ◽  
Author(s):  
Yingwei Fan ◽  
Qiong Ma ◽  
Jie Liang ◽  
Yuxin Lu ◽  
Bo Ni ◽  
...  
2021 ◽  
pp. 63-67
Author(s):  
I.I. Khusnitdinov ◽  

Purpose. Еxperimental substantiation of the effectiveness of biocompatible biodegradable hydrogels based on hyaluronic acid and chitosan succinate as a carrier of ranibizumab in antiglaucoma operations. Material and methods. Hydrogel drainage (HD) was obtained immediately before surgery. A solution of ranibizumab (0.23 ml) was mixed with a solution of hyaluronic acid dialdehyde (0.5 ml), then a solution of chitosan succinate (0.5 ml) was added. Experimental studies were performed in 12 (12 eyes) healthy rabbits. The first group consisted of 6 eyes – 0.187 ml of ranibizumab per 1 ml of gel. In the control group, HD was used intraoperatively without the addition of ranibizumab (6 eyes). Morphological studies were performed on 7th, 21st, and 42nd days. Results. In experimental studies in vitro and in vivo, it was proved that ranibizumab, administered as a part of 0.1 ml of hydrogel drainage in the antiglaucoma surgery area is released within 3 weeks and suppresses vascularization, scarring of the operating area, and preserves the intrascleral cavity. The optimal concentration of ranibizumab was selected-0.02 ml in 0.1 ml of gel. Conclusion. The safety and effectiveness of the use of hydrogel drainage with ranibizumab based on hyaluronic acid dialdehyde and chitosan succinate in anti-glaucoma operations has been proven. Key words: experimental research, hydrogel drainage, ranibizumab, glaucoma surgery.


1997 ◽  
Vol 6 (3) ◽  
pp. 277
Author(s):  
A. Ployon ◽  
J. Dubousset ◽  
F. Lavastf ◽  
N. Maurel ◽  
W. Skalli ◽  
...  

2020 ◽  
Vol 60 ◽  
pp. 211-217
Author(s):  
Panji Sananta ◽  
Rahaditya I Gede Made Oka ◽  
Prof Respati Suryanto Dradjat ◽  
Heri Suroto ◽  
Edi Mustamsir ◽  
...  

Blood ◽  
1984 ◽  
Vol 63 (5) ◽  
pp. 1203-1208 ◽  
Author(s):  
E Alhanaty ◽  
MP Sheetz

Abstract The shape of the human erythrocyte is normally maintained in vivo as a biconcave disc for 120 days. In vitro, the cell shape can be altered readily by amphipathic compounds; however, given time and an energy source, the cells can recover the discoid morphology. An active shape control mechanism is postulated to regulate erythrocyte shape. The shape recovery process is a necessary element in reversing perturbations of shape and is basic to our understanding of how membrane shape is altered. We report here that the process of shape recovery from crenation is dramatically accelerated upon pretreatment of the cells with micromolar (20–100 microM) concentrations of chloromethyl ketone peptides [such as N-alpha-tosyl-L-phenylalanine- chloromethyl ketone (tos-pheCH2Cl)]. Such pretreatments do not appear to affect cellular viability, as judged by their normal biconcave disc shape, their sensitivity to crenators, their lactic acid production, or the ATP-dependent shape change of the purified membranes. Treatment with high concentrations of tos-pheCH2Cl does cause normal cells to become stomatocytic by an energy-requiring process, i.e., it requires glucose, incubation at 37 degrees C, and will not occur in ATP-depleted cells. We suggest that the chloromethyl ketone peptides affect a metabolic process that is associated with the hexose monophosphate (HMP) shunt. Through the alteration of the HMP shunt metabolism, they modify an active stomatocytic process in the erythrocyte that can correct for the perturbation caused by crenators. Implications of these findings for analogous phenomena in cultured cells are discussed.


Author(s):  
de Araújo ◽  
Aidar ◽  
Matos ◽  
Santos ◽  
Souza ◽  
...  

Many species of the genus Croton have been used for anti-inflammatory, antiproliferative, antidiabetic, and antitumor purposes. The objective was to evaluate the effect of a hydroethanolic extract (HEE) from the inner bark of Croton argyrophyllus (Euphorbiaceae) on muscle damage and oxidative stress in rats after high intensity exercise. The animals were divided into four groups: (i) the sedentary group (SV; n = 7), (ii) the exercise vehicle group (EV, n = 7), (iii) the sedentary group HEE (SHG; n = 7) composed of sedentary animals and treated with the hydroethanolic extract of C. argyrophyllus (200 mg/kg, v.o.), and (iv) the HEE exercise group (HEE; n = 7) composed of animals submitted to resistance exercise (RE) and treated with the hydroethanolic extract of C. argyrophyllus (200 mg/kg, v.o.). In the 2,2-Diphenyl-1-picrylhydrazyl (DPPH) test, the HEE showed lower values of inhibition potential (IP%) at 39.79% compared to gallic acid, 87.61%, and lipoperoxidation inhibition at 27.4% (100 µg/mL) or 28.6% (200 µg/mL) (p < 0.001). There was inhibition in free radicals in vivo. The HEE of C. argyrophyllus partially reduced the biomarkers of oxidative stress in muscle tissue and muscular damage (creatine kinase (CK) and Lactate Dehydrogenase (LDH)) (p < 0.05) in rats, and in this sense it can be an aid to the recovery process after exhaustive efforts.


2011 ◽  
Vol 56 (1) ◽  
pp. 243-247 ◽  
Author(s):  
Carlos A. Rodriguez ◽  
Maria Agudelo ◽  
Andres F. Zuluaga ◽  
Omar Vesga

ABSTRACTPrevious studies have shown that “bioequivalent” generic products of vancomycin are less effectivein vivoagainstStaphylococcus aureusthan the innovator compound. Considering that suboptimal bactericidal effect has been associated with emergence of resistance, we aimed to assessin vivothe impact of exposure to innovator and generic products of vancomycin onS. aureussusceptibility. A clinical methicillin-resistantS. aureus(MRSA) strain from a liver transplant patient with persistent bacteremia was used for which MIC, minimum bactericidal concentration (MBC), and autolytic properties were determined. Susceptibility was also assessed by determining a population analysis profile (PAP) with vancomycin concentrations from 0 to 5 mg/liter. ICR neutropenic mice were inoculated in each thigh with ∼7.0 log10CFU. Treatment with the different vancomycin products (innovator and three generics; 1,200 mg/kg of body weight/day every 3 h) started 2 h later while the control group received sterile saline. After 24 h, mice were euthanized, and the thigh homogenates were plated. Recovered colonies were reinoculated to new groups of animals, and the exposure-recovery process was repeated until 12 cycles were completed. The evolution of resistance was assessed by PAP after cycles 5, 10, 11, and 12. The initial isolate displayed reduced autolysis and higher resistance frequencies thanS. aureusATCC 29213 but without vancomycin-intermediateS. aureus(VISA) subpopulations. After 12 cycles, innovator vancomycin had significantly reduced resistant subpopulations at 1, 2, and 3 mg/liter, while the generic products had enriched them progressively by orders of magnitude. The great capacity of generic vancomycin to select for less susceptible organisms raises concerns about the role of therapeutic inequivalence of any antimicrobial on the epidemiology of resistance worldwide.


2017 ◽  
Vol 35 (15_suppl) ◽  
pp. 10092-10092
Author(s):  
Leonidas Apostolidis ◽  
Daniel Schwarz ◽  
Annie Xia ◽  
Markus Weiler ◽  
Sabine Heiland ◽  
...  

10092 Background: Oxaliplatin induced peripheral neuropathy (OXA-PNP) is a frequent side effect of oxaliplatin containing chemotherapy protocols. It is commonly assessed clinically via physical examination and patient reported symptoms. Research has been impeded by the lack of objective tests to quantify OXA-PNP. Neurophysiological examination is time-consuming and can only cover a selected part of the examined nerve. The aim of this study was to investigate in-vivo morphological correlates of OXA-PNP by magnetic resonance neurography (MRN). Methods: 20 patients with mild to moderate OXA-PNP and 20 matched controls were prospectively enrolled. All patients underwent a detailed neurophysiology examination prior to neuroimaging. A standardized MRN imaging protocol at 3.0 Tesla with large-coverage included the lumbosacral plexus, as well as both sciatic nerves and their branches using T2-weighted fat-saturated sequences at high resolution. Qualitative evaluation of sciatic, tibial, and peroneal nerves were performed by two readers regarding the presence, degree, and distribution of nerve lesions. Quantitative assessment included volumetry of the dorsal root ganglia (DRG) and sciatic nerve normalized T2 (nT2) signal and caliber. Results: Significant DRG hypertrophy in OXA-PNP patients (207.3±47.7mm3 vs. 153.0±47.1mm3 in controls, p = 0.001) was found as morphological correlate of the sensory neuronopathy. Peripheral nerves only exhibited slight morphological alterations qualitatively. Quantitatively, sciatic nerve caliber was unchanged (26.0±5.1mm2 vs. 27.4±7.4mm2, p = 0.19) while sciatic nerve nT2 signal was slightly and non-significantly elevated in patients (1.32±0.22 vs. 1.22±0.26, p = 0.19). Conclusions: OXA-PNP leads to morphological correlates that can be detected in-vivo by MRN. Significant hypertrophy of the DRG was observed, a phenomenon which has not been described in OXA-PNP previously. DRG volume should be investigated as a biomarker in other sensory peripheral neuropathies and ganglionopathies as well as in studies evaluating neuroprotective strategies for OXA-PNP.


2004 ◽  
Vol 10 (2) ◽  
pp. 138-140 ◽  
Author(s):  
Qu Xun ◽  
Zheng Guang-juan ◽  
Liu Fu-li ◽  
Zhang Dan ◽  
Zhang Jing ◽  
...  

2013 ◽  
Vol 33 (12) ◽  
pp. 1967-1975 ◽  
Author(s):  
Abraham Martín ◽  
Boguslaw Szczupak ◽  
Vanessa Gómez-Vallejo ◽  
Sandra Plaza ◽  
Daniel Padró ◽  
...  

The use of selective serotonin reuptake inhibitors has shown functional improvement after stroke. Despite this, the role of serotoninergic neurotransmission after cerebral ischemia evolution and its involvement in functional recovery processes are still largely unknown. For this purpose, we performed in parallel in vivo magnetic resonance imaging and positron emission tomography (PET) with [11C]DASB and [18F]altanserin at 1, 3, 7, 14, 21, and 28 days after middle cerebral artery occlusion (MCAO) in rats. In the ischemic territory, PET with [11C]DASB and [18F]altanserin showed a dramatic decline in serotonin transporter (SERT) and 5-HT2A binding potential in the cortex and striatum after cerebral ischemia. Interestingly, a slight increase in [11C]DASB binding was observed from days 7 to 21 followed by the uppermost binding at day 28 in the ipsilateral midbrain. In contrast, no changes were observed in the contralateral hemisphere by using both radiotracers. Likewise, both functional and behavior testing showed major impaired outcome at day 1 after ischemia onset followed by a recovery of the sensorimotor function and dexterity from day 21 to day 28 after cerebral ischemia. Taken together, these results might evidence that SERT changes in the midbrain could have a key role in the functional recovery process after cerebral ischemia.


Sign in / Sign up

Export Citation Format

Share Document