A new tracking error detection method using amplitude difference detection for signal waveform modulation multi-level discs

2010 ◽  
Vol 19 (10) ◽  
pp. 104209 ◽  
Author(s):  
Yan Ming-Ming ◽  
Pei Jing ◽  
Pan Long-Fa
2014 ◽  
Vol 933 ◽  
pp. 82-85
Author(s):  
Shi Feng Wang ◽  
Yi Xiang Yue ◽  
Jin Fang

In this paper, the actual operation of the superconducting motor and electrical parameters, a detailed analysis of the advantages and disadvantages of the existing quench detection method. After that I proposed an innovative detection method - voltage phase difference detection. On this basis, the design phase detection method based on the voltage difference quench detection and protection systems, based on stand-alone test and NI development platform test results, we verify its feasibility of the voltage phase difference detection method, and great superiority.


2021 ◽  
Vol 233 ◽  
pp. 02012
Author(s):  
Shousheng Liu ◽  
Zhigang Gai ◽  
Xu Chai ◽  
Fengxiang Guo ◽  
Mei Zhang ◽  
...  

Bacterial colonies detecting and counting is tedious and time-consuming work. Fortunately CNN (convolutional neural network) detection methods are effective for target detection. The bacterial colonies are a kind of small targets, which have been a difficult problem in the field of target detection technology. This paper proposes a small target enhancement detection method based on double CNNs, which can not only improve the detection accuracy, but also maintain the detection speed similar to the general detection model. The detection method uses double CNNs. The first CNN uses SSD_MOBILENET_V1 network with both target positioning and target recognition functions. The candidate targets are screened out with a low confidence threshold, which can ensure no missing detection of small targets. The second CNN obtains candidate target regions according to the first round of detection, intercepts image sub-blocks one by one, uses the MOBILENET_V1 network to filter out targets with a higher confidence threshold, which can ensure good detection of small targets. Through the two-round enhancement detection method has been transplanted to the embedded platform NVIDIA Jetson AGX Xavier, the detection accuracy of small targets is significantly improved, and the target error detection rate and missed detection rate are reduced to less than 1%.


2021 ◽  
Vol 7 (4) ◽  
pp. 117
Author(s):  
Linling Fang ◽  
Yingle Fan

<p>A biomimetic vision computing model based on multi-level feature channel optimization coding is proposed and applied to image contour detection, combining the end-to-end detection method of full convolutional neural network and the traditional contour detection method based on biological vision mechanism. Considering the effectiveness of the Gabor filter in perceiving the scale and direction of the image target, the Gabor filter is introduced to simulate the multi-level feature response on the visual path. The optimal scale and direction of the Gabor filter are obtained based on the similarity index, and they are used as the frequency separation parameter of the NSCT transform. The contour sub-image obtained by the NSCT transform is combined with the original image for feature enhancement and fusion to realize the primary contour response. The low-dimensional and low-redundancy primary contour response is used as the input sample of the network model to relieve network pressure and reduce computational complexity. A fully improved convolutional neural network model is constructed for multi-scale training, through feature encoder to feature decoder, to achieve end-to-end pixel prediction, and obtain a complete and continuous detection image of the subject contour. Using the BSDS500 atlas as the experimental sample, the average accuracy index is 0.85, which runs on the device CPU at a detection rate of 20+ FPS to achieve a good balance between training efficiency and detection effect.</p>


Author(s):  
Fengchen Wang ◽  
Yan Chen

Abstract To improve the cybersecurity of flocking control for connected and automated vehicles (CAVs), this paper proposes a novel resilient flocking control by specifically considering cyber-attack threats on vehicle tracking errors. Using the vehicle tracking error dynamics model, a dual extended Kalman filter (DEKF) is applied to detect cyber-attacks as an unknown constant on vehicle tracking information with noise rejections. To handle the coupling effects between tracking errors and cyber-attacks, the proposed DEKF consists of a tracking error filter and a cyber-attack filter, which are utilized to conduct the prediction and correction of tracking errors alternatively. Whenever an abnormal tracking error is detected, an observer-based resilient flocking control is enabled. Demonstrated by simulation results, the proposed cyber-attack detection method and resilient flocking control design can successfully achieve and maintain the flocking control of multi-CAV systems by rejecting certain cyber-attack threats.


2019 ◽  
Vol 12 (4) ◽  
pp. 880-887
Author(s):  
张 广 ZHANG Guang ◽  
王新华 WANG Xin-hua ◽  
李大禹 LI Da-yu

Sign in / Sign up

Export Citation Format

Share Document