Half-life of bismuth isotopes predicted by the Coulomb and proximity potential model; a proposition for the spherical nuclei

2012 ◽  
Vol 36 (10) ◽  
pp. 964-966 ◽  
Author(s):  
E. Javadimanesh ◽  
H. Hassanabadi ◽  
A. A. Rajabi ◽  
H. Rahimov ◽  
S. Zarrinkamar
Author(s):  
K. P. Anjali ◽  
K. Prathapan ◽  
R. K. Biju ◽  
K. P. Santhosh

Based on the Coulomb and Proximity Potential Model, we have studied the decay probabilities of various exotic nuclei from even-even nuclei in the super heavy region. The half-lives and barrier penetrability for the decay of exotic nuclei such as 7-9B, 16-19 Ne, 8-11 C, 23-30 P and 26-32 S from the isotopes 274-332116,274-334 118 and 288-334120 are determined by considering them as spherical as well as deformed nuclei. The effect of ground state quadrupole (β2), Octupole (β3) and hexadecapole (β4) deformation of parent, daughter and cluster nuclei on half- lives and barrier penetrability were studied. Calculations have done for the spherical nuclei and deformed nuclei in order to present the effects of the deformations on half-lives. It is found that height and shape of the barrier reduces by the inclusion of deformation and hence half-life for the emission of different clusters decreases and barrierpenetrability increases. Changes in the half-lives with and without the inclusion of deformation effects are compared in the graph of half -life and barrier penetrability against neutron number of parents. It is evident from the computed half lives that many of the exotic nuclei emissions are probable. Moreover shell structure effects on the half-lives of decay are evident from these plots. Peak in the plot of halflife and dip in the plot of barrier penetrability against neutron number of parent show shell closure at or near to N=184, N=200 and N=212.


2017 ◽  
Vol 26 (05) ◽  
pp. 1750024
Author(s):  
S. S. Hosseini ◽  
H. Hassanabadi ◽  
S. Zarrinkamar

We considered the systematics of Alpha-decay (AD) half-life (HL) of super-heavy nuclei (SHN) versus the decay energy and the total [Formula: see text]-kinetic energy. We have considered a potential model with Yukawa proximity potential and thereby calculated the HLs. Our results compared with experimental data and the empirical estimates. Also, we obtained [Formula: see text]-preformation factors from the ratio between theoretical and experimental results for a few super heavy nuclei. The results indicate the acceptability of the approach.


2019 ◽  
Vol 28 (06) ◽  
pp. 1950043 ◽  
Author(s):  
S. S. Hosseini ◽  
H. Hassanabadi ◽  
Dashty T. Akrawy ◽  
S. Zarrinkamar

The [Formula: see text]-decay (AD) half-life (HL) of [Formula: see text]Po [Formula: see text] isotopes is studied systematically within the modified Coulomb and proximity potential model (MCPPM). The computed HLs are compared with the existing theoretical formulae including Royer, AKRE, Ren B and MRen B. This study considers the role of neutron shell closure [Formula: see text] on the AD HLs. The comparison with the experimental data indicates the acceptability of the results.


2014 ◽  
Vol 23 (10) ◽  
pp. 1450059 ◽  
Author(s):  
K. P. Santhosh ◽  
B. Priyanka

The cluster decay process in 270–318118 superheavy nuclei has been studied extensively within the Coulomb and proximity potential model (CPPM), thereby investigating the probable cluster decays from the various isotopes of Z = 118. On comparing the predicted decay half-lives with the values evaluated using the Universal formula for cluster decay (UNIV) of Poenaru et al., the Universal Decay Law (UDL) of Qi et al., and the Scaling Law of Horoi et al., it was seen that, our values matches well with these theoretical values. A comparison of the predicted alpha decay half-life of the experimentally synthesized superheavy isotope 294118 with its corresponding experimental value shows that, our theoretical value is in good agreement with the experimental value. The plots for log 10(T1/2) against the neutron number of the daughter in the corresponding decay reveals the behavior of the cluster half-lives with the neutron number of the daughter nuclei and for most of the decays, the half-life was found to be the minimum for the decay leading to a daughter with N = 184. Most of the predicted half-lives are well within the present experimental upper limit (1030 s) and lower limit (10-6 s) for measurements and hence these predictions may be of great use for further experimental investigation on cluster decay in the superheavy region.


2015 ◽  
Vol 24 (02) ◽  
pp. 1550010 ◽  
Author(s):  
D. Naderi ◽  
M. Zargooshi

In this paper, Coulomb and proximity potential model has been applied to calculate the half-lives of alpha-decay for isotopes around N = Z = 50. Using this model, we investigated the influence of deformation and orientation of daughter nucleus on alpha-decay half-lives. Two orientations (90° and 180°) with quadrupole deformation are applied to study the role of daughter orientation in alpha-decay process. It is found that the deformation and orientation of daughter nucleus affects the alpha-decay half-life and changes the slope and intercept of linear relation between log10(T1/2) and Q-1/2.


2013 ◽  
Vol 22 (11) ◽  
pp. 1350081 ◽  
Author(s):  
K. P. SANTHOSH ◽  
B. PRIYANKA

The alpha-decay half-lives of the 24 isotopes of Eu (Z = 63) nuclei in the region 130≤A≤153, have been studied systematically within the Coulomb and proximity potential model (CPPM). We have modified the assault frequency and re-determined the half-lives and they show a better agreement with the experimental value. We have also done calculations on the half-lives within the recently proposed Coulomb and proximity potential model for deformed nuclei (CPPMDN). The computed half-lives are compared with the experimental data and they are in good agreement. Using our model, we could also demonstrate the influence of the neutron shell closure at N = 82, in both parent and daughter nuclei, on the alpha-decay half-lives.


Author(s):  
R.K. Biju ◽  
K. Prathapan ◽  
K.P. Anjali

The possibility for the existence of 1-neutron and 2-neutron halo nuclei through the decay of even-even nuclei 270-316116, 272-318118 and 278-320120 in the super-heavy region is studied within the frame work of the Coulomb and Proximity Potential Model (CPPM). Halo structure in neutron rich nuclei with Z<=20  is identified by calculating the neutron separation energies and on the basis of potential energy considerations. The 1n + core configuration of proposed 1-neutron halo nuclei between z=10  and Z=20 is found shifted to 2n + core configuration in higher angular momentum states. The calculation of half-life of decay is performed by considering the proposed halo nuclei as spherical cluster and as deformed nuclei with a rms radius. Except for 15C, the half-life of decay is found decreased when the rms radius is considered. Only the 1-neutron halo nuclei 26F and 55Ca showed half-lives of decay which are less than the experimental limit. None of the proposed 2-neutron halo nuclei have shown a half-life of decay lower than the experimental limit. Also, the probability for the emission of neutron halo nuclei is found to be less in super-heavy region when compared with the clusters of same isotope family. Further, neutron shell closure at neutron numbers 150, 164 and 184 is identified form the plot of  log10 T1/2 verses the neutron number of parents. The plots of Q-1/2 verses log10 T1/2 and -ln P verses log10 T1/2 for various halo nuclei emitted from the super-heavy elements are found to be linear showing that Geiger-Nuttall law is applicable to the emission of neutron halo also.


2021 ◽  
Author(s):  
De-Xing Zhu ◽  
Hong-Ming Liu ◽  
Yang-Yang Xu ◽  
You-Tian Zou ◽  
Xi-Jun Wu ◽  
...  

Abstract In the present work, considering the preformation probability of the emitted two protons in the parent nucleus, we extend the Coulomb and proximity potential model (CPPM) to systematically study two-proton (2p) radioactivity half-lives of the nuclei close to proton drip line, while the proximity potential is chosen as Prox.81 proposed by Blocki et al. in 1981. Furthermore, we apply this model to predict the half-lives of possible 2p radioactive candidates whose 2p radioactivity is energetically allowed or observed but not yet quantified in the evaluated nuclear properties table NUBASE2016. The predicted results are in good agreement with those from other theoretical models and empirical formulas, namely the effective liquid drop model (ELDM), generalized liquid drop model (GLDM), Gamow-like model, Sreeja formula and Liu formula.


2020 ◽  
Vol 997 ◽  
pp. 121714 ◽  
Author(s):  
V. Zanganah ◽  
Dashty T. Akrawy ◽  
H. Hassanabadi ◽  
S.S. Hosseini ◽  
Shagun Thakur

2020 ◽  
Vol 29 (02) ◽  
pp. 2050008 ◽  
Author(s):  
S. S. Hosseini ◽  
H. Hassanabadi ◽  
Dashty T. Akrawy ◽  
Ali H. Ahmed

The half-life of a parent nucleus of Astatine isotopes [Formula: see text] decaying via alpha emission is investigated by employing Coulomb and proximity potential model (CPPM) using the WKB barrier penetration probability and other different analytical and semiempirical formulae of Royer, AKRE, Akrawy, RoyerB, MRoyerB, MRenB, SemFIS, VS and SLB. In the calculation of Alpha decay (AD) half-life the available experimental and theoretical [Formula: see text]-values with the total alpha kinetic energy have been considered. The behavior of hindrance factor with the variation of mass numbers of parent nuclei for isotopes in the range [Formula: see text] and the effect of magic number at closed shells were investigated. Through the comparison of obtained results from the systematics with the experimental data, the prediction of SemFIS formula was the best among the studied ones where it shows the minimum standard deviation of 0.829881.


Sign in / Sign up

Export Citation Format

Share Document