scholarly journals The electrical conductivity and energy band gap of ‘bunga belimbing buluh’/tio2nanocrystals as hybrid solar cell

2018 ◽  
Vol 1027 ◽  
pp. 012009
Author(s):  
N H Kamarulzaman ◽  
H Salleh ◽  
M S M Ghazali ◽  
S M Ghazali ◽  
Z Ahmad
2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. A. Faremi ◽  
S. S. Oluyamo ◽  
O. Olubosede ◽  
I. O. Olusola ◽  
M. A. Adekoya ◽  
...  

Abstract In this paper, energy band gaps and electrical conductivity based on aluminum selenide (Al2Se3) thin films are synthesized electrochemically using cathodic deposition technique, with graphite and carbon as cathode and anode, respectively. Synthesis is done at 353 K from an aqueous solution of analytical grade selenium dioxide (SeO2), and aluminum chloride (AlCl2·7H2O). Junctions-based Al2Se3 thin films from a controlled medium of pH 2.0 are deposited on fluorine-doped tin oxide (FTO) substrate using potential voltages varying from 1,000 mV to 1,400 mV and 3 minutes −15 minutes respectively. The films were characterized for optical properties and electrical conductivity using UV-vis and photoelectrochemical cells (PEC) spectroscopy. The PEC reveals a transition in the conduction of the films from p-type to n-type as the potential voltage varies. The energy band gap reduces from 3.2 eV to 2.9 eV with an increase in voltage and 3.3 eV to 2.7 eV with increase in time. These variations indicate successful fabrication of junction-based Al2Se3 thin films with noticeable transition in the conductivity type and energy band gap of the materials. Consequently, the fabricated Al2Se3 can find useful applications in optoelectronic devices.


2016 ◽  
Vol 846 ◽  
pp. 620-625 ◽  
Author(s):  
Hamizah Nadia Alias@Yusof ◽  
Hasiah Salleh ◽  
Mohd Ikmar Nizam Mohamad Isa

Conjugated polymers have been widely used for electronic purpose applications due to their numerous advantages. This has led many researches to pay their major attention in studying on characteristics of conjugated polymer thin films. The purpose of this study was to investigate the effect of undoped conjugated polymer thin films on their optical and electrical properties. Poly(3-thiophene acetic acid), Polypyrrole and Polythiophene thin film was fabricated on ITO glass substrate by using EIS. Film thickness, energy band gap and electrical conductivity of thin films were characterized by using profilometer, ultraviolet-visible spectrometer and four point probe method respectively. The thickness of each thin film varied between 50.534 nm to 97.03 nm. The result has shown that thicker film has lower energy band gap compared to the thinner one. However the electrical conductivity showed an opposite behavior.


2014 ◽  
Vol 705 ◽  
pp. 324-328
Author(s):  
Young Il Kwon ◽  
Dae Hyun Jeong

For an efficient solution in the organic solar cell, the requirements may be largely as follows: development of organic semi-conductor material with a low energy band gap, enhancement of efficiency through morphology and surface control and an increase in efficiency utilizing tandem cell and plasmon technology. This study analyzed research trends in these three fields through a network analysis and mapping analysis using thesis information and patent information. It was shown that in case of the enhancement of efficiency through the development of semi-conductor material with an energy band gap on organic solar cell, morphology and surface control, there have been many ongoing studies since 2007. The enhancement technology for efficient utilization of tandem cell and plasmon technology has been frequently studied recently.


2018 ◽  
Vol 54 (1A) ◽  
pp. 183
Author(s):  
Phung Dinh Hoat

Operation of ZnO/In2S3/Cu2Sn3S7/Mo solar cell was calculated using the SCAPS software. Main input data were energy band gap Eg, absorption coefficient α, thickness d, mobility μ and carrier concentration n of the ZnO, In2S3 and Cu2Sn3S7 films obtained from experiments. In all calculation processes, parameters of the ZnO (Eg = 3.3 eV, d = 0.2 μm, μn = 100 cm2/(Vs)) and In2S3 (Eg = 2.96 eV, d = 0.1 μm, μn = 50 cm2/(Vs)) films were kept constant. Effects of thickness d and carrier concentration np of the Cu2Sn3S7 (αmax = 4.2×104 cm-1, Eg = 1.46 eV) film on Voc, Jsc, Vm, Jm, FF and η of the cell were investigated in the ranges of d = 0.3 – 3.5 μm and np = 1017 – 1020 cm-3. Under the standard AM 1.5G illumination at 300 K, the ZnO/In2S3/Cu2Sn3S7/Mo solar cell having Rs = 10 Ω.cm2 and Rsh = 1×106 Ω.cm2 using Cu2Sn3S7 film having d = 2 μm, αmax = 4.2×104 cm-1, Eg = 1.46 eV, μp = 15 cm2/(Vs) and np = 1020 cm-3 has the highest conversion efficiency ηmax = 18.0 % with Voc = 0.98 V, Jsc = 31.2 mA/cm2, Vm = 0.62 V, Jm = 28.8 mA/cm2 and FF = 58.8 %.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1512
Author(s):  
Changho Seo ◽  
Seongsoo Cho ◽  
Je Huan Koo
Keyword(s):  
Band Gap ◽  

We investigate why normal electrons in superconductors have no resistance. Under the same conditions, the band gap is reduced to zero as well, but normal electrons at superconducting states are condensed into this virtual energy band gap.


Sign in / Sign up

Export Citation Format

Share Document