scholarly journals Optoelectronics applications of electrodeposited p- and n-type Al2Se3 thin films

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
A. A. Faremi ◽  
S. S. Oluyamo ◽  
O. Olubosede ◽  
I. O. Olusola ◽  
M. A. Adekoya ◽  
...  

Abstract In this paper, energy band gaps and electrical conductivity based on aluminum selenide (Al2Se3) thin films are synthesized electrochemically using cathodic deposition technique, with graphite and carbon as cathode and anode, respectively. Synthesis is done at 353 K from an aqueous solution of analytical grade selenium dioxide (SeO2), and aluminum chloride (AlCl2·7H2O). Junctions-based Al2Se3 thin films from a controlled medium of pH 2.0 are deposited on fluorine-doped tin oxide (FTO) substrate using potential voltages varying from 1,000 mV to 1,400 mV and 3 minutes −15 minutes respectively. The films were characterized for optical properties and electrical conductivity using UV-vis and photoelectrochemical cells (PEC) spectroscopy. The PEC reveals a transition in the conduction of the films from p-type to n-type as the potential voltage varies. The energy band gap reduces from 3.2 eV to 2.9 eV with an increase in voltage and 3.3 eV to 2.7 eV with increase in time. These variations indicate successful fabrication of junction-based Al2Se3 thin films with noticeable transition in the conductivity type and energy band gap of the materials. Consequently, the fabricated Al2Se3 can find useful applications in optoelectronic devices.

2016 ◽  
Vol 846 ◽  
pp. 620-625 ◽  
Author(s):  
Hamizah Nadia Alias@Yusof ◽  
Hasiah Salleh ◽  
Mohd Ikmar Nizam Mohamad Isa

Conjugated polymers have been widely used for electronic purpose applications due to their numerous advantages. This has led many researches to pay their major attention in studying on characteristics of conjugated polymer thin films. The purpose of this study was to investigate the effect of undoped conjugated polymer thin films on their optical and electrical properties. Poly(3-thiophene acetic acid), Polypyrrole and Polythiophene thin film was fabricated on ITO glass substrate by using EIS. Film thickness, energy band gap and electrical conductivity of thin films were characterized by using profilometer, ultraviolet-visible spectrometer and four point probe method respectively. The thickness of each thin film varied between 50.534 nm to 97.03 nm. The result has shown that thicker film has lower energy band gap compared to the thinner one. However the electrical conductivity showed an opposite behavior.


2020 ◽  
Vol 5 (2) ◽  
Author(s):  
Olusayo Olubosede ◽  
Abass A Faremi ◽  
F M Owolabi ◽  
Esther Ajiboye ◽  
Julius O Fateye ◽  
...  

In this paper, Aluminum selenide (Al2Se3) thin films are synthesized electrochemically using cathodic deposition technique in which graphite was used as a cathode while carbon as an anode. Synthesis is done at 353 K temperature from an aqueous solution of analytical grade selenium dioxide (SeO2), and Aluminum chloride (AlCl2.7H2O). Aluminum selenide thin films from a controlled medium (pH =2.0) are synthesized on fluorine doped tin oxide (FTO) substrate using varied potential voltages 1000 mV, 1100 mV, 1200 mV, 1300 mV and 1400 mV. The films are characterized for their optical properties and electrical conductivity. These various characterization reveals the successful fabrication of Al2Se3 thin films. Further investigation was done to study the effect of variation in the potential voltages.Keywords- Electrodeposition; Thin Films; Cathodic graphite; Characterization; Varied potential voltages.


2010 ◽  
Vol 404 (1) ◽  
pp. 186-191 ◽  
Author(s):  
J.-K. Chung ◽  
J. W. Kim ◽  
D. Do ◽  
S. S. Kim ◽  
T. K. Song ◽  
...  

2001 ◽  
Vol 24 (1) ◽  
pp. 57-61 ◽  
Author(s):  
M. A. Grado-Caffaro ◽  
M. Grado-Caffaro ◽  
S. L. Sapienza

In this paper, the dependence on the partial pressure of oxygen of the shift in the energy band-gap of CdO thin films for the visible region is investigated from the theoretical point of view on an experimental basis. In our analysis, the role played by the dependence of the carrier density upon the above pressure is emphasized.


Author(s):  
Lim Joon Hoong

The effects of sintering atmosphere on the optical, thermal and electric properties of inkjet printed ZnxCu(1-x)Fe2O4 thin films have been investigated. The thin film samples were sintered separately in vacuum and oxygen. The obtained samples were then characterized by X-ray diffraction (XRD), optical band gap, electrical conductivity, Seebeck coefficient and thermal conductivity. XRD analysis showed that the fabricated samples have a cubic spinel structure of zinc copper ferrite regardless of the sintering atmosphere. The electrical conductivity of ZnxCu(1-x)Fe2O4 thin films sintered in oxygen was about 5 % higher compared to ZnxCu(1-x)Fe2O4 thin films sintered in vacuum. The optical band gap shows that the samples sintered in oxygen had smaller band gap compared to samples sintered in vacuum. The electronic band structure simulated through ABINIT shows ZnxCu(1-x)Fe2O4 is an indirect band gap material. A smaller electronic band gap was observed in O2 rich condition and was in agreement with the optical band gap and electrical conductivity test results. Seebeck coefficient of ZnxCu(1-x)Fe2O4 thin films sintered in oxygen remained positive , confirming charge transport by hole carries as p-type semiconductors. A change from p-type to n-type semiconductors was observed when ZnxCu(1-x)Fe2O4 thin films sintered in vacuum.


Sign in / Sign up

Export Citation Format

Share Document