scholarly journals Heat transfer in helium-xenon mixture flowing in straight and twisted tubes with triangle cross-section

2018 ◽  
Vol 1105 ◽  
pp. 012010
Author(s):  
M S Makarov ◽  
V S Naumkin
Author(s):  
Fady Bishara ◽  
Milind A. Jog ◽  
Raj M. Manglik

Periodically fully-developed swirling laminar flows in twisted tubes with elliptical cross sections are computationally simulated. The tubes are helically twisted and their geometry is described by the 180° twist ratios y of 3.0, 4.5 and 6.0, and ellipse cross-section aspect ratio of 0.7. Constant-property flow of water (nominal Pr = 3.0) with a Reynolds number range of 10 to 1200 is considered. The analysis quantifies the improvement in the Nusselt number as well as the increase in friction factor in order to map the effective heat transfer enhancement due to the twisted-tube-geometry-induced swirl flows. To this effect, the numerical results are compared with the baseline cases having a twist ratio of y = infinity, or straight elliptical cross-section tubes for which well established correlations are available. Numerical results show that the friction factor and the Nusselt number are a strong function of the twist ratio and the Reynolds number. The increase in fRe and Nu is higher as the twist becomes tighter (lower values of y). For Reynolds numbers below about 100, the heat transfer results do not deviate significantly from the straight-tube values, but at higher values of Re, significant enhancement in heat transfer is evident for all twist ratios considered here. The friction factor and Nusselt number results provided in this paper will help practicing engineers in integrating twisted elliptical tubes in various heat transfer applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousef Alihosseini ◽  
Mohammad Reza Azaddel ◽  
Sahel Moslemi ◽  
Mehdi Mohammadi ◽  
Ali Pormohammad ◽  
...  

AbstractIn recent years, PCR-based methods as a rapid and high accurate technique in the industry and medical fields have been expanded rapidly. Where we are faced with the COVID-19 pandemic, the necessity of a rapid diagnosis has felt more than ever. In the current interdisciplinary study, we have proposed, developed, and characterized a state-of-the-art liquid cooling design to accelerate the PCR procedure. A numerical simulation approach is utilized to evaluate 15 different cross-sections of the microchannel heat sink and select the best shape to achieve this goal. Also, crucial heat sink parameters are characterized, e.g., heat transfer coefficient, pressure drop, performance evaluation criteria, and fluid flow. The achieved result showed that the circular cross-section is the most efficient shape for the microchannel heat sink, which has a maximum heat transfer enhancement of 25% compared to the square shape at the Reynolds number of 1150. In the next phase of the study, the circular cross-section microchannel is located below the PCR device to evaluate the cooling rate of the PCR. Also, the results demonstrate that it takes 16.5 s to cool saliva samples in the PCR well, which saves up to 157.5 s for the whole amplification procedure compared to the conventional air fans. Another advantage of using the microchannel heat sink is that it takes up a little space compared to other common cooling methods.


1965 ◽  
Vol 87 (4) ◽  
pp. 355-360 ◽  
Author(s):  
J. C. Chato

The general problem of condensation in a variable acceleration field was investigated analytically. The case of the linear variation, which occurs in a constant cross section, rotating thermosyphon, was treated in detail. The results show that the condensate thickness and Nusselt numbers approach limiting values as the radial distance increases. The effects of the temperature differential and the Prandtl number are similar to those in other condensation problems; i.e., the heat transfer increases slightly with increasing temperature differential if Pr > 1, but it decreases with increasing temperature differential if Pr ≪ 1.


1984 ◽  
Vol 106 (1) ◽  
pp. 252-257 ◽  
Author(s):  
D. E. Metzger ◽  
C. S. Fan ◽  
S. W. Haley

Modern high-performance gas turbine engines operate at high turbine inlet temperatures and require internal convection cooling of many of the components exposed to the hot gas flow. Cooling air is supplied from the engine compressor at a cost to cycle performance and a design goal is to provide necessary cooling with the minimum required cooling air flow. In conjunction with this objective, two families of pin fin array geometries which have potential for improving airfoil internal cooling performance were studied experimentally. One family utilizes pins of a circular cross section with various orientations of the array with respect to the mean flow direction. The second family utilizes pins with an oblong cross section with various pin orientations with respect to the mean flow direction. Both heat transfer and pressure loss characteristics are presented. The results indicate that the use of circular pins with array orientation between staggered and inline can in some cases increase heat transfer while decreasing pressure loss. The use of elongated pins increases heat transfer, but at a high cost of increased pressure loss. In conjunction with the present measurements, previously published results were reexamined in order to estimate the magnitude of heat transfer coefficients on the pin surfaces relative to those of the endwall surfaces. The estimate indicates that the pin surface coefficients are approximately double the endwall values.


Sign in / Sign up

Export Citation Format

Share Document