Heat Transfer during Flow Twisting in a Channel of Square Cross Section

2006 ◽  
Vol 37 (6) ◽  
pp. 551-560
Author(s):  
Yu. I. Shanin
Keyword(s):  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yousef Alihosseini ◽  
Mohammad Reza Azaddel ◽  
Sahel Moslemi ◽  
Mehdi Mohammadi ◽  
Ali Pormohammad ◽  
...  

AbstractIn recent years, PCR-based methods as a rapid and high accurate technique in the industry and medical fields have been expanded rapidly. Where we are faced with the COVID-19 pandemic, the necessity of a rapid diagnosis has felt more than ever. In the current interdisciplinary study, we have proposed, developed, and characterized a state-of-the-art liquid cooling design to accelerate the PCR procedure. A numerical simulation approach is utilized to evaluate 15 different cross-sections of the microchannel heat sink and select the best shape to achieve this goal. Also, crucial heat sink parameters are characterized, e.g., heat transfer coefficient, pressure drop, performance evaluation criteria, and fluid flow. The achieved result showed that the circular cross-section is the most efficient shape for the microchannel heat sink, which has a maximum heat transfer enhancement of 25% compared to the square shape at the Reynolds number of 1150. In the next phase of the study, the circular cross-section microchannel is located below the PCR device to evaluate the cooling rate of the PCR. Also, the results demonstrate that it takes 16.5 s to cool saliva samples in the PCR well, which saves up to 157.5 s for the whole amplification procedure compared to the conventional air fans. Another advantage of using the microchannel heat sink is that it takes up a little space compared to other common cooling methods.


1965 ◽  
Vol 87 (4) ◽  
pp. 355-360 ◽  
Author(s):  
J. C. Chato

The general problem of condensation in a variable acceleration field was investigated analytically. The case of the linear variation, which occurs in a constant cross section, rotating thermosyphon, was treated in detail. The results show that the condensate thickness and Nusselt numbers approach limiting values as the radial distance increases. The effects of the temperature differential and the Prandtl number are similar to those in other condensation problems; i.e., the heat transfer increases slightly with increasing temperature differential if Pr > 1, but it decreases with increasing temperature differential if Pr ≪ 1.


1984 ◽  
Vol 106 (1) ◽  
pp. 252-257 ◽  
Author(s):  
D. E. Metzger ◽  
C. S. Fan ◽  
S. W. Haley

Modern high-performance gas turbine engines operate at high turbine inlet temperatures and require internal convection cooling of many of the components exposed to the hot gas flow. Cooling air is supplied from the engine compressor at a cost to cycle performance and a design goal is to provide necessary cooling with the minimum required cooling air flow. In conjunction with this objective, two families of pin fin array geometries which have potential for improving airfoil internal cooling performance were studied experimentally. One family utilizes pins of a circular cross section with various orientations of the array with respect to the mean flow direction. The second family utilizes pins with an oblong cross section with various pin orientations with respect to the mean flow direction. Both heat transfer and pressure loss characteristics are presented. The results indicate that the use of circular pins with array orientation between staggered and inline can in some cases increase heat transfer while decreasing pressure loss. The use of elongated pins increases heat transfer, but at a high cost of increased pressure loss. In conjunction with the present measurements, previously published results were reexamined in order to estimate the magnitude of heat transfer coefficients on the pin surfaces relative to those of the endwall surfaces. The estimate indicates that the pin surface coefficients are approximately double the endwall values.


Author(s):  
D. Sahray ◽  
H. Shmueli ◽  
N. Segal ◽  
G. Ziskind ◽  
R. Letan

In the present work, horizontal-base pin fin heat sinks exposed to free convection in air are studied. They are made of aluminum, and there is no contact resistance between the base and the fins. For the same base dimensions the fin height and pitch vary. The fins have a constant square cross-section. The edges of the sink are blocked: the surrounding insulation is flush with the fin tips. The effect of fin height and pitch on the performance of the sink is studied experimentally and numerically. In the experiments, the heat sinks are heated using foil electrical heaters. The heat input is set, and temperatures of the base and fins are measured. In the corresponding numerical study, the sinks and their environment are modeled using the Fluent 6 software. The results show that heat transfer enhancement due to the fins is not monotonic. The differences between sparsely and densely populated sinks are analyzed for various fin heights. Also assessed are effects of the blocked edges as compared to the previously studied cases where the sink edges were exposed to the surroundings.


Geophysics ◽  
2018 ◽  
Vol 83 (5) ◽  
pp. D173-D185 ◽  
Author(s):  
Tobias Orlander ◽  
Eirini Adamopoulou ◽  
Janus Jerver Asmussen ◽  
Adam Andrzej Marczyński ◽  
Harald Milsch ◽  
...  

Thermal conductivity of rocks is typically measured on core samples and cannot be directly measured from logs. We have developed a method to estimate thermal conductivity from logging data, where the key parameter is rock elasticity. This will be relevant for the subsurface industry. Present models for thermal conductivity are typically based primarily on porosity and are limited by inherent constraints and inadequate characterization of the rock texture and can therefore be inaccurate. Provided known or estimated mineralogy, we have developed a theoretical model for prediction of thermal conductivity with application to sandstones. Input parameters are derived from standard logging campaigns through conventional log interpretation. The model is formulated from a simplified rock cube enclosed in a unit volume, where a 1D heat flow passes through constituents in three parallel heat paths: solid, fluid, and solid-fluid in series. The cross section of each path perpendicular to the heat flow represents the rock texture: (1) The cross section with heat transfer through the solid alone is limited by grain contacts, and it is equal to the area governing the material stiffness and quantified through Biot’s coefficient. (2) The cross section with heat transfer through the fluid alone is equal to the area governing fluid flow in the same direction and quantified by a factor analogous to Kozeny’s factor for permeability. (3) The residual cross section involves the residual constituents in the solid-fluid heat path. By using laboratory data for outcrop sandstones and well-log data from a Triassic sandstone formation in Denmark, we compared measured thermal conductivity with our model predictions as well as to the more conventional porosity-based geometric mean. For outcrop material, we find good agreement with model predictions from our work and with the geometric mean, whereas when using well-log data, our model predictions indicate better agreement.


1965 ◽  
Vol 7 (1) ◽  
pp. 1-7 ◽  
Author(s):  
P. J. Baker

This paper presents the results of heat transfer measurements taken on a two-dimensional supersonic parallel diffuser. The wall static pressure distributions and the corresponding heat transfer coefficients and fluxes have been measured for a range of initial total pressures. The effects of varying the area of the diffuser cross-section for the same upstream generating nozzle have also been studied. Mach number profiles measured at sections along the diffuser show that in the presence of shock waves and a positive pressure gradient the flow is very much underdeveloped. In general, the mean level of heat transfer is found to be much greater than that predicted by conventional empirical equations for subsonic pipe flows with zero pressure gradient. Further, on comparison between normal and oblique shock diffusion the former is found to give the higher level of heat transfer.


Author(s):  
Maslina Yaacob ◽  
Mohd Haniff Ibrahim ◽  
Norazan Mohd Kassim ◽  
Abu Bakar Mohammad

In this paper, the analysis of thermal distribution in planar optical waveguide cross-section when a single heater electrode applied is presented. Starting from the heat equation, the thermal analysis has been done using two proposed numerical methods which are include finite difference method (FDM) and finite element method (FEM). By considering conduction as the only heat transfer mechanism, the obtained results from the mentioned methods are shown to have a good agreement.


Sign in / Sign up

Export Citation Format

Share Document