scholarly journals Comparative investigation on physical and mechanical properties of water hyacinth and cattail fiber reinforced epoxy hybrid composites

2018 ◽  
Vol 1144 ◽  
pp. 012056 ◽  
Author(s):  
P Kongkaew ◽  
S Namsak ◽  
W Pharanat
2021 ◽  
pp. 004051752110432
Author(s):  
S Mohd Izwan ◽  
SM Sapuan ◽  
MYM Zuhri ◽  
AR Muhamed

The main purpose of this work is to investigate the effect of benzoyl treatment on the performance of sugar palm/kenaf fiber-reinforced polypropylene hybrid composites. Water absorption tests were carried out to confirm the effect of benzoylation treatment toward fabricating a more hydrophobic behavior of the hybrid composites. Both treated and untreated composites that have 10 wt.% of fiber loading with three different fiber ratios between sugar palm and kenaf (7:3, 5:5, 3:7) were analyzed. Physical and mechanical properties such as tensile, flexural, and impact strength were determined from this study. Morphological properties were obtained using scanning electron microscopy (SEM). It was found that the tensile strength of sugar palm/kenaf-reinforced polypropylene hybrid composites was improved with the treatment of benzoyl with a value of 19.41 MPa. In addition, hybrid composite with treated sugar palm and kenaf fiber T-SP3K7 recorded the highest impact and flexural strength of 19.4 MPa and 18.4 MPa, respectively. In addition, SEM demonstrated that surface treatment enhanced the mechanical properties of the hybrid composites. Overall, it can be suggested that benzoyl-treated composites with a higher volume of kenaf fiber than sugar palm fiber will improve the mechanical characteristics of the hybrid composites.


2020 ◽  
Vol 70 (2) ◽  
pp. 167-180
Author(s):  
Vennapusa Vijaya Bhaskar ◽  
Kolla Srinivas ◽  
Devireddy Siva Bhaskara Rao

AbstractThe present work addresses the physical and mechanical properties of banana and palmyra fiber reinforced epoxy composites with the aim of study on the effect of weight ratio and fiber percentage. The banana and palmyra fibers were arranged with different weight ratios (1:1, 1:3, and 3:1) and then mixed with the epoxy matrix by hand lay-up technique to prepare the hybrid composites with various fiber percentages (10%, 20%, 30% and 40%). The properties are measured by testing its density, water absorption, tensile strength, impact strength, hardness and flexural strength and compared. From the results, it was indicated that addition of banana and palmyra fiber in to the matrix material up to 30% by fiber percentage results in increasing the mechanical properties and slightly variation with weight ratios. Interfacial analysis of the hybrid composites were also observed by using scanning electron microscope (SEM) to study the internal failures and micro structure of the tested specimen.


2014 ◽  
Vol 592-594 ◽  
pp. 92-96 ◽  
Author(s):  
V. Muthukumar ◽  
R. Venkatasamy ◽  
V. Mariselvam ◽  
A. Sureshbabu ◽  
N. Senthilkumar ◽  
...  

The aim of present experimental investigation is to compare the mechanical properties of Sisal, jute and kenaf fiber reinforced with glass fiber in polyester matrix hybrid composites. Hybrid composites were fabricated by hand lay-up technique. The tensile, flexural and impact tests were carried out on different composite samples as per the ASTM standards. It was observed that the tensile strength of jute/glass fiber composite is 1.94 and 1.59 times more than that of sisal/glass and kenaf/glass composites, respectively. The flexural load carrying capacity of sisal/glass composite is 3.4 and 2.83 times greater than those of jute/glass and kenaf/glass composites, respectively. Also, it can be seen that impact strength of jute/glass composite is almost equal to that of kenaf/glass composite and 1.13 times more than that of sisal/glass composite.


2019 ◽  
Vol 61 (11) ◽  
pp. 1095-1100 ◽  
Author(s):  
Sivakumar Dhar Malingam ◽  
Kathiravan Subramaniam ◽  
Ng Lin Feng ◽  
Siti Hajar Sheikh MD Fadzullah ◽  
Sivaraos Subramonian

2013 ◽  
Vol 20 (4) ◽  
pp. 343-350 ◽  
Author(s):  
Pandian Amuthakkannan ◽  
Vairavan Manikandan ◽  
Jebbas Thangaiah Winowlin Jappes ◽  
Marimuthu Uthayakumar

AbstractMechanical properties of fiber reinforcement that can be obtained by the introduction of basalt fibers in jute fiber-reinforced polyester composites have been analyzed experimentally. Basalt/jute fiber-reinforced hybrid polymer composites were fabricated with a varying fiber percentage by using compression molding techniques. The fabricated composite plates were subjected to mechanical testing to estimate tensile strength, flexural strength and impact strength of the composites. The effect of fiber content on basalt/jute fiber in the composites has been studied. Addition of jute fiber into basalt fiber composite makes it a cost-effective one. Incorporation of basalt fiber into the composites was at approximately 10%, 20%, up to 90%, and the jute fiber percentage was reduced from 90%, 80%, to 10% correspondingly. Mechanical properties were investigated as per ASTM standards. Tensile and flexural strengths were tested by using a computer-assisted universal testing machine, and impact strength by using an Izod impact tester. It has been observed that the addition of jute fiber to the basalt fiber polyester composites enhanced the mechanical properties. Water absorption of hybrid composites was also analyzed and was found to be proportional to fiber percentage.


BioResources ◽  
2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Djamila Kada ◽  
Sébastien Migneault ◽  
Ghezalla Tabak ◽  
Ahmed Koubaa

2008 ◽  
Vol 47-50 ◽  
pp. 486-489 ◽  
Author(s):  
Kasama Jarukumjorn ◽  
Nitinat Suppakarn ◽  
Jongrak Kluengsamrong

Natural fiber reinforced polymer composites became more attractive due to their light weight, high specific strength, biodegradability. However, some limitations e.g. low modulus, poor moisture resistance were reported. The mechanical properties of natural fiber reinforced composites can be improved by hybridization with synthetic fibers such as glass fiber. In this research, mechanical properties of short sisal-PP composites and short sisal/glass fiber hybrid composites were studied. Polypropylene grafted with maleic anhydride (PP-g-MA) was used as a compatibilizer to enhance the compatibility between the fibers and polypropylene. Effect of weight ratio of sisal and glass fiber at 30 % by weight on the mechanical properties of the composites was investigated. Morphology of fracture surface of each composite was also observed.


Sign in / Sign up

Export Citation Format

Share Document