scholarly journals Physical and Mechanical Properties of Polypropylene-Wood-Carbon Fiber Hybrid Composites

BioResources ◽  
2015 ◽  
Vol 11 (1) ◽  
Author(s):  
Djamila Kada ◽  
Sébastien Migneault ◽  
Ghezalla Tabak ◽  
Ahmed Koubaa
2021 ◽  
pp. 004051752110432
Author(s):  
S Mohd Izwan ◽  
SM Sapuan ◽  
MYM Zuhri ◽  
AR Muhamed

The main purpose of this work is to investigate the effect of benzoyl treatment on the performance of sugar palm/kenaf fiber-reinforced polypropylene hybrid composites. Water absorption tests were carried out to confirm the effect of benzoylation treatment toward fabricating a more hydrophobic behavior of the hybrid composites. Both treated and untreated composites that have 10 wt.% of fiber loading with three different fiber ratios between sugar palm and kenaf (7:3, 5:5, 3:7) were analyzed. Physical and mechanical properties such as tensile, flexural, and impact strength were determined from this study. Morphological properties were obtained using scanning electron microscopy (SEM). It was found that the tensile strength of sugar palm/kenaf-reinforced polypropylene hybrid composites was improved with the treatment of benzoyl with a value of 19.41 MPa. In addition, hybrid composite with treated sugar palm and kenaf fiber T-SP3K7 recorded the highest impact and flexural strength of 19.4 MPa and 18.4 MPa, respectively. In addition, SEM demonstrated that surface treatment enhanced the mechanical properties of the hybrid composites. Overall, it can be suggested that benzoyl-treated composites with a higher volume of kenaf fiber than sugar palm fiber will improve the mechanical characteristics of the hybrid composites.


2020 ◽  
Vol 869 ◽  
pp. 488-493
Author(s):  
Aues A. Beev ◽  
Svetlana Yu. Khashirova ◽  
Azamat L. Slonov ◽  
Ismel V. Musov ◽  
Azamat Zhansitov ◽  
...  

The article presents the results of sizing of discrete carbon fibers with various substances and their effect on the properties of polyetherimide composites. As sizing agents, 1,3-diaminobenzene, 4,4'-dihydroxy-2,2-diphenylpropane, polyetherimide and oligoetherether sulfone were used. The study of physical and mechanical properties showed that all the substances used increase the properties of the carbon-filled composite based on polyetherimide. The highest mechanical properties are demonstrated by a composite containing carbon fibers treated with 1,3-diaminobenzene, which indicates improved compatibility of the filler and the polymer matrix and enhanced intermolecular interactions.


Polymer ◽  
2020 ◽  
Vol 204 ◽  
pp. 122830
Author(s):  
Bin He ◽  
Boyao Wang ◽  
Zhanwen Wang ◽  
Shengli Qi ◽  
Guofeng Tian ◽  
...  

2019 ◽  
Vol 40 (8) ◽  
pp. 3140-3148
Author(s):  
Xuelong Fu ◽  
Zhengbo Ji ◽  
Wei Lin ◽  
Wei Liu ◽  
Yuebin Lin ◽  
...  

2017 ◽  
Vol 13 (10) ◽  
pp. 6558-6562
Author(s):  
A. Athijayamani ◽  
A.Sujin Jose ◽  
K. Ramanathan ◽  
S. Sidhardhan

In this study, Wood Dust (WD)/Phenol Formaldehyde (PF) and Coir Pith (CP)/PF composites were hybridized with the Prosopis Juliflora Fiber (PJF) to obtain the hybrid composites. Composites were prepared by hand moulding technique. The weight percentage of particles and fibers are fixed in the ratio of 1:1. Mechanical properties such as tensile, flexural and impact strengths were evaluated as a function of the particle and fiber loadings. The results show that the properties of both the WD and CP composites obviously improved by the addition of the PJF. The improvement in WD/PF composites was obviously higher than the CP/PF composites for all loadings. The WD/PJF/PF hybrid composites exhibited better tensile (strength of 48.9 MPA and modulus of 1262.1 MPa, respectively), flexural (strength of 55.4 MPa and modulus of 1344.3 MPa, respectively), and impact properties (1.32 KJ/m2). 


2020 ◽  
Vol 70 (2) ◽  
pp. 167-180
Author(s):  
Vennapusa Vijaya Bhaskar ◽  
Kolla Srinivas ◽  
Devireddy Siva Bhaskara Rao

AbstractThe present work addresses the physical and mechanical properties of banana and palmyra fiber reinforced epoxy composites with the aim of study on the effect of weight ratio and fiber percentage. The banana and palmyra fibers were arranged with different weight ratios (1:1, 1:3, and 3:1) and then mixed with the epoxy matrix by hand lay-up technique to prepare the hybrid composites with various fiber percentages (10%, 20%, 30% and 40%). The properties are measured by testing its density, water absorption, tensile strength, impact strength, hardness and flexural strength and compared. From the results, it was indicated that addition of banana and palmyra fiber in to the matrix material up to 30% by fiber percentage results in increasing the mechanical properties and slightly variation with weight ratios. Interfacial analysis of the hybrid composites were also observed by using scanning electron microscope (SEM) to study the internal failures and micro structure of the tested specimen.


2018 ◽  
Vol 38 (6) ◽  
pp. 513-523 ◽  
Author(s):  
Wiranphat Thodsaratpreeyakul ◽  
Putinun Uawongsuwan ◽  
Akio Kataoka ◽  
Takanori Negoro ◽  
Hiroyuki Hamada

Abstract Improving the applicability of polyethylene terephthalate (PET) by carbon fiber/glass fiber reinforcement is of great interest. Glass fiber (GF)/carbon fiber (CF)/PET hybrid composites were fabricated by direct fiber feeding injection molding (DFFIM) process. The aim of DFFIM is to obtain longer fibers in composites in order to improve their mechanical properties. In this study, the mechanical properties of GF/PET composites fabricated by conventional injection molding and hybrid GF/CF/PET composites fabricated by DFFIM process were investigated. The influence of GF and CF volume fractions on fiber distribution, fiber orientation, and fiber length is discussed. Fiber distribution status was quantitatively measured by the fiber distribution index. Fiber agglomeration problem was observed by scanning electron microscopy. The results indicate that incorporating CF in GF/CF/PET hybrid composites by the DFFIM process greatly enhances mechanical performance even when only a small amount of CF is added. Too high GF content leads to less effective CF hybridization because it causes poor fiber distribution and poor fiber orientation and intensifies fiber attrition. The ideal volume fractions of GF and CF for fabricating GF/CF/PET hybrid composites by using DFFIM are provided.


Sign in / Sign up

Export Citation Format

Share Document