scholarly journals 3-dimensional eksternal electric field effect (Stark effect) on the ground state energy of Tritium atom

2019 ◽  
Vol 1171 ◽  
pp. 012022
Author(s):  
I K Mahardika ◽  
A Harijanto ◽  
S Bahri ◽  
Z R Ridlo
2007 ◽  
Vol 21 (24) ◽  
pp. 1635-1642
Author(s):  
MIAN LIU ◽  
WENDONG MA ◽  
ZIJUN LI

We conducted a theoretical study on the properties of a polaron with electron-LO phonon strong-coupling in a cylindrical quantum dot under an electric field using linear combination operator and unitary transformation methods. The changing relations between the ground state energy of the polaron in the quantum dot and the electric field intensity, restricted intensity, and cylindrical height were derived. The numerical results show that the polar of the quantum dot is enlarged with increasing restricted intensity and decreasing cylindrical height, and with cylindrical height at 0 ~ 5 nm , the polar of the quantum dot is strongest. The ground state energy decreases with increasing electric field intensity, and at the moment of just adding electric field, quantum polarization is strongest.


2012 ◽  
Vol 26 (26) ◽  
pp. 1250172 ◽  
Author(s):  
JUN ZHU ◽  
SHI LIANG BAN ◽  
SI HUA HA

The ground state binding energies of donor impurities in strained [0001]-oriented wurtzite GaN / Al x Ga 1-x N asymmetric double quantum wells are investigated using a variational method combined with numerical computation. The built-in electric field due to the spontaneous and strain-induced piezoelectric polarization and the strain modification on material parameters are taken into account. The variations of binding energies versus the width of central barrier, the ratio of two well widths, and the impurity position are presented, respectively. It is found that the built-in electric field causes a mutation of binding energies with increasing the width of central barrier to some value. The results for symmetrical double quantum wells and without the built-in electric field are also discussed for comparison.


2011 ◽  
Vol 25 (03) ◽  
pp. 203-210
Author(s):  
WEI-PING LI ◽  
JI-WEN YIN ◽  
YI-FU YU ◽  
JING-LIN XIAO

The ground-state energy of polaron was obtained with strong electron-LO-phonon coupling by using a variational method of the Pekar type in a parabolic quantum dot (QD). Quantum transition occurs in the quantum system due to the electron-phonon interaction and the influence of temperature. That is the polaron transition from the ground-state to the first-excited state after absorbing a LO-phonon and it causes the changing of the polaron lifetime. Numerical calculations are performed and the results illustrate the relations of the ground-state lifetime of the polaron on the ground-state energy of polaron, the electric field strength, the temperature, the electron-LO-phonon coupling strength and the confinement length of the quantum dot.


1995 ◽  
Vol 405 ◽  
Author(s):  
R. Mu ◽  
A. Ueda ◽  
Y -S. Tung ◽  
D. O. Henderson ◽  
Jane G. Zhu ◽  
...  

AbstractWe have investigated quantum-confined Stark effect (QCSE) on GaAs and CdSe nanocrystals and the electric field effect on surface phonons of GaAs nanocrystals isolated in sapphire substrates. For a strongly quantum-confined system, GaAs quantum dots illustrated no exciton energy shift. When the excitons are weakly confined in CdSe, a ∼ 2 meV red-shift was observed. On the other hand, the results of the electric field effect on surface phonon are dramatic both phonon oscilator strength and freqnency. As the strength of the electric field increases, the total intensity of the surface phonon decreases. At the same time, an additional peak was also observed at 277 cm-1, which is about 3 cm-1 above the center frequency of the surface phonon mode of GaAs nanocrystals embedded in a sapphire host.


RSC Advances ◽  
2014 ◽  
Vol 4 (51) ◽  
pp. 26543-26551 ◽  
Author(s):  
Baotao Kang ◽  
Hongguang Liu ◽  
Du-Jeon Jang ◽  
Jin Yong Lee

In this paper, first-principles calculations were performed regarding the electric field effect on the ground state proton transfer (GSPT) in the H-bonded p-hydroxybenzylideneimidazolidinone (HBDI) network that represents the active site of the green fluorescent protein (GFP).


Sign in / Sign up

Export Citation Format

Share Document