scholarly journals Maxwell-Klein-Gordon system with nontrivial coupling on four dimensional Minkowski spacetime

2019 ◽  
Vol 1204 ◽  
pp. 012130
Author(s):  
Fiki T Akbar ◽  
Bobby E Gunara
2020 ◽  
Vol 35 (37) ◽  
pp. 2050307
Author(s):  
B. Hamil ◽  
M. Merad

In this paper, by using the Dirac derivatives the Klein–Gordon (K-G) equation is determined in a [Formula: see text]-Minkowski spacetime. The dispersion relation and the first-order approximation case are deduced. The Feshbach–Villars (FV) equation is derived by applying the new linearization process to the time. We then study the effect of magnetic interaction on energies spectrum in a [Formula: see text]-Minkowski spacetime as an application, as a result we found that the energies spectrum are not symmetrical. We also study the case of hydrogen atom in non-relativistic limit by using perturbation theory. The upper bound of the [Formula: see text]-deformation parameter is evaluate, on the basis of the experimental data for [Formula: see text] transition frequency.


Author(s):  
Shijie Dong ◽  
Philippe G. LeFloch ◽  
Zoe Wyatt

Abstract Relying on the hyperboloidal foliation method, we establish the nonlinear stability of the ground state of the U(1) standard model of electroweak interactions. This amounts to establishing a global-in-time theory for the initial value problem for a nonlinear wave–Klein–Gordon system that couples (Dirac, scalar, gauge) massive equations together. In particular, we investigate here the Dirac equation and study a new energy functional defined with respect to the hyperboloidal foliation of Minkowski spacetime. We provide a decay result for the Dirac equation which is uniform in the mass coefficient and thus allows for the Dirac mass coefficient to be arbitrarily small. Furthermore, we establish energy bounds for the Higgs fields and gauge bosons that are uniform with respect to the hyperboloidal time variable.


Author(s):  
Daniel Canarutto

Certain densities related to mass-shells in Minkowski spacetime, and the Fourier transforms of such densities, constitute the ground for a thorough examination of elementary solutions and propagators of the Klein-Gordon and Dirac equations. These notions turn out to be relevant in the computations of transition amplitudes in quantum particle physics.


Author(s):  
Bahram Mashhoon

A postulate of locality permeates through the special and general theories of relativity. First, Lorentz invariance is extended in a pointwise manner to actual, namely, accelerated observers in Minkowski spacetime. This hypothesis of locality is then employed crucially in Einstein’s local principle of equivalence to render observers pointwise inertial in a gravitational field. Field measurements are intrinsically nonlocal, however. To go beyond the locality postulate in Minkowski spacetime, the past history of the accelerated observer must be taken into account in accordance with the Bohr-Rosenfeld principle. The observer in general carries the memory of its past acceleration. The deep connection between inertia and gravitation suggests that gravity could be nonlocal as well and in nonlocal gravity the fading gravitational memory of past events must then be taken into account. Along this line of thought, a classical nonlocal generalization of Einstein’s theory of gravitation has recently been developed. In this nonlocal gravity (NLG) theory, the gravitational field is local, but satisfies a partial integro-differential field equation. A significant observational consequence of this theory is that the nonlocal aspect of gravity appears to simulate dark matter. The implications of NLG are explored in this book for gravitational lensing, gravitational radiation, the gravitational physics of the Solar System and the internal dynamics of nearby galaxies as well as clusters of galaxies. This approach is extended to nonlocal Newtonian cosmology, where the attraction of gravity fades with the expansion of the universe. Thus far only some of the consequences of NLG have been compared with observation.


2021 ◽  
Vol 2021 (3) ◽  
Author(s):  
Temple He ◽  
Prahar Mitra

Abstract We perform a careful study of the infrared sector of massless non-abelian gauge theories in four-dimensional Minkowski spacetime using the covariant phase space formalism, taking into account the boundary contributions arising from the gauge sector of the theory. Upon quantization, we show that the boundary contributions lead to an infinite degeneracy of the vacua. The Hilbert space of the vacuum sector is not only shown to be remarkably simple, but also universal. We derive a Ward identity that relates the n-point amplitude between two generic in- and out-vacuum states to the one computed in standard QFT. In addition, we demonstrate that the familiar single soft gluon theorem and multiple consecutive soft gluon theorem are consequences of the Ward identity.


Sign in / Sign up

Export Citation Format

Share Document