scholarly journals Improved FAHP Evaluation of Comprehensive Performance of Mechanical Products

2019 ◽  
Vol 1314 ◽  
pp. 012123
Author(s):  
Qichun Jin ◽  
Xiaojian Yang ◽  
Yuan Hu ◽  
Shourong Lu ◽  
Yanhai Cheng
2020 ◽  
Vol 27 (1) ◽  
pp. 455-463
Author(s):  
Lixia Guo ◽  
Minghua Wang ◽  
Ling Zhong ◽  
Yanan Zhang

AbstractThe internal curing technology has been widely applied to high-strength concrete, for it can make the high-strength concrete marked by low shrinkage and durable frost resistance. The key to its extension and application lies in the reasonable mixing amount of internal curing materials. To address this problem, scholars have proposed a method for determining the water demand in internal curing; however, the water release of internal curing materials is difficult to obtain by measurement due to the mixing method. Therefore, this paper proposed a calculation model for the mixing amount of internal curing materials based on the modified MULTIMOORA method (Multi-Objective Optimization on the basis of Ratio Analysis plus full multiplicative form). First, different internal curing materials (super absorbent polymer (SAP), lightweight aggregate (LWA)) and pretreatment methods were selected to calculate their compressive strength, self-shrinkage and frost durability according to a proposed test scheme on the mixing amount of internal curing materials, and in such case, the comprehensive performance evaluation of the above indexes was turned into a multi-attribute decision-making problem. Second, the ordered weighted averaging (OWA) method and the entropy weight method were used to determine the subjective and objective weights of the indexes respectively, to eliminate the impact of outliers in the subjective evaluation values. Finally, the comprehensive performance of each test group was sorted using MULTIMOORA, and based on the sorting results and the calculation model, the mixing amount of internal curing materials was determined. The numerical example application results showed that the mixing amount of SAP curing material calculated based on the model herein was 1.276 kg/m3, and the mixing method adopted the pre-water absorption method with the total water-binder ratio unchanged. The numerical example evaluation results were in good agreement with the test results. The internal curing effect of SAP was better than that of LWA, and reached the best when the mixing amount was calculated at 25 times the water release rate and the requirement for the maximum total water diversion was met. The study may provide new ideas for extension and application of the internal curing technology.


2021 ◽  
Vol 13 (9) ◽  
pp. 4678
Author(s):  
Yi-Jia Xing ◽  
Tse-Lun Chen ◽  
Meng-Yao Gao ◽  
Si-Lu Pei ◽  
Wei-Bin Pan ◽  
...  

Green infrastructure practices could provide innovative solutions for on-site stormwater management and runoff pollution control, which could relieve the stress of nonpoint pollution resulting from heavy rainfall events. In this study, the performance and cost-effectiveness of six green infrastructure practices, namely, green roofs, rain gardens, pervious surfaces, swales, detention basins, and constructed wetlands, were investigated. The comprehensive performance evaluation in terms of the engineering performance, environmental impact, and economic cost was determined in the proposed engineering–environmental–economic (3E) triangle model. The results revealed that these green infrastructure practices were effective for stormwater management in terms of runoff attenuation, peak flow reduction and delay, and pollutant attenuation. It was suggested that for pollution control, detention basins can efficiently reduce the total suspended solids, total nitrogen, total phosphorus, and lead. The implementation of detention basins is highly recommended due to their higher engineering performance and lower environmental impact and economic cost. A case study of a preliminary cost–benefit analysis of green infrastructure practice exemplified by the Pearl River Delta in China was addressed. It suggested that green infrastructure was cost-effective in stormwater management in this area, which would be helpful for sustaining healthy urban watersheds.


Sign in / Sign up

Export Citation Format

Share Document