scholarly journals Solution of loose medium movement problem on a curvilinear sifting surface

2019 ◽  
Vol 1348 ◽  
pp. 012022
Author(s):  
A Kharitonov ◽  
A Busigina ◽  
I Maslennikov
2019 ◽  
Vol 2019 (1) ◽  
Author(s):  
Fan Chen ◽  
Zhixiao Xu

AbstractIn this paper, a numerical approximation method for the two-dimensional unsaturated soil water movement problem is established by using the discontinuous finite volume method. We prove the optimal error estimate for the fully discrete format. Finally, the reliability of the method is verified by numerical experiments. This method is not only simple to calculate, but also stable and reliable.


2016 ◽  
Vol 78 (8-6) ◽  
Author(s):  
Rose Nadia ◽  
Rosli Saad ◽  
Nordiana Muztaza ◽  
Nur Azwin Ismail ◽  
Mohd Mokhtar Saidin

In this study, correlation is made between seismic P-wave velocities (Vp) with standard penetration test (SPT-N) values to produce soil parameter estimation for engineering site applications. A seismic refraction tomography (SRT) line of 69 m length was spread across two boreholes with 3 m geophones spacing. The acquired data were processed using Firstpix, SeisOpt2D and surfer8 software. The Vp at particular depths were pinpointed and correlated with geotechnical parameters (SPT-N values) from the borehole records. The correlation between Vp and SPT-N values has been established. For cohesive soils, it is grouped into three categories according to consistencies; stiff, very stiff and hard, having velocity rangesof 575-314 m/s, 808-1483 m/s and 1735-2974 m/s, respectively. For non-cohesive soils, it is also divided into three categories based on the denseness as loose, medium dense and dense with Vp ranges of 528-622 m/s, 900-2846 m/s and 2876-2951 m/s, respectively


2013 ◽  
Vol 12 (1-2) ◽  
Author(s):  
Zinovij Stotsko ◽  
Volodymyr Topilnytskyj ◽  
Darija Rebot
Keyword(s):  

2019 ◽  
Vol 41 (3) ◽  
pp. 151-159
Author(s):  
Mehdi Missoum Benziane ◽  
Noureddine Della ◽  
Sidali Denine ◽  
Sedat Sert ◽  
Said Nouri

AbstractThe inclusions of geosynthetic materials (fibers, geomembranes and geotextiles) is a new improvement technique that ensures uniformity in the soil during construction. The use of tension resisting discreet inclusions like polypropylene fibers has attracted a significant amount of attention these past years in the improvement of soil performance in a cost-efficient manner. A series of direct shear box tests were conducted on unreinforced and reinforced Chlef sand with different contents of fibers (0, 0.25, 0.5 and0.75%) in order to study the mechanical behavior of sand reinforced with polypropylene fibers. Samples were prepared at three different relative densities 30%, 50% and 80% representing loose, medium dense and dense states,respectively, and performed at normal stresses of 50, 100 and 200 kPa. The experimental results show that the mechanical characteristics are improved with the addition of polypropylene fibers. The inclusion of randomly distributed fibers has a significant effect on the shear strength and dilation of sandy soil. The increase in strength is a function of fiber content, where it has been shown that the mechanical characteristics improve with the increase in fiber content up to 0.75%, this improvement is more significant at a higher normal stress and relative density.


i-Perception ◽  
10.1068/ic934 ◽  
2011 ◽  
Vol 2 (8) ◽  
pp. 934-934
Author(s):  
Hsu Li-Chuan ◽  
Yi-Min Tien ◽  
Wei-Chi Lin

2002 ◽  
Vol 39 (3) ◽  
pp. 648-664 ◽  
Author(s):  
K Ilamparuthi ◽  
E A Dickin ◽  
K Muthukrisnaiah

An experimental investigation of the uplift behaviour of relatively large scale model circular plate anchors up to 400 mm in diameter embedded in loose, medium-dense, and dense dry sand is described. Uplift capacity is strongly influenced by anchor diameter, embedment ratio, and sand density. In tests on shallow half-cut models, a gently curved rupture surface emerged from the top edge of the anchor to the sand surface at approximately ϕ/2 to the vertical, where ϕ is the angle of shearing resistance. For a deep anchor, a balloon-shaped rupture surface emerged at 0.8ϕ to the vertical immediately above the anchor and was confined within the sand bed. The load-displacement behaviour of full-shaped models was three-phase and two-phase for shallow and deep anchors, respectively. Alternative methods of determining the critical embedment ratio are considered, and values of 4.8, 5.9, and 6.8 are proposed for loose, medium-dense, and dense sand, respectively. Empirical equations are presented which yield breakout factors similar to those from many published laboratory and field studies.Key words: circular anchor, uplift capacity, sand, critical embedment ratio, failure mechanism.


2004 ◽  
Vol 40 (2) ◽  
pp. 147-155 ◽  
Author(s):  
O. A. Revuzhenko
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document