scholarly journals Operation features of the pulse penning ion source in the transition pressure range

2019 ◽  
Vol 1393 ◽  
pp. 012047
Author(s):  
N V Mamedov ◽  
S P Maslennilov ◽  
A A Solodovnikov ◽  
D I Yurkov
AIChE Journal ◽  
1970 ◽  
Vol 16 (1) ◽  
pp. 32-37 ◽  
Author(s):  
T. E. Mistler ◽  
G. R. Correll ◽  
J. O. Mingle

Sensors ◽  
2019 ◽  
Vol 19 (3) ◽  
pp. 624
Author(s):  
Tongtong Yao ◽  
Fei Tang ◽  
Jian Zhang ◽  
Xiaohao Wang

It is difficult to generate and maintain the vacuum level in vacuum MEMS (Micro-Electro-Mechanical Systems) devices. Currently, there is still no single method or device capable of generating and maintaining the desired vacuum level in a vacuum device for a long time. This paper proposed a new wide-pressure-range miniature ion source, which can be applied to a vacuum micropump. The miniature ion source consists only of silicon electrodes and a glass substrate. Its operating pressure range covers seven orders of magnitude, starting from atmospheric pressure, a promising solution to the difficulty. Based on the principle of gas discharge, the ion source features a simple two-electrode structure with a two-stage electrode spacing, operating under DC voltage excitation. The first-stage electrode spacing of the ion source is small enough to ensure that it starts working at atmospheric pressure down to a certain reduced pressure when it automatically switches to discharge at the larger second-stage electrode spacing and operates from that pressure down to a high vacuum. Two configurations of the ion source have been tested: without-magnet, operating from atmospheric pressure down to 1 mbar; and with-magnet, operating from atmospheric pressure to 10−4 mbar, which covers seven orders of magnitude of pressure. The ion source can be applied not only to a MEMS ion pump to meet demands of a variety of vacuum MEMS devices, but can also be applied to other devices, such as vacuum microgauges and mass spectrometers.


Author(s):  
Dudley M. Sherman ◽  
Thos. E. Hutchinson

The in situ electron microscope technique has been shown to be a powerful method for investigating the nucleation and growth of thin films formed by vacuum vapor deposition. The nucleation and early stages of growth of metal deposits formed by ion beam sputter-deposition are now being studied by the in situ technique.A duoplasmatron ion source and lens assembly has been attached to one side of the universal chamber of an RCA EMU-4 microscope and a sputtering target inserted into the chamber from the opposite side. The material to be deposited, in disc form, is bonded to the end of an electrically isolated copper rod that has provisions for target water cooling. The ion beam is normal to the microscope electron beam and the target is placed adjacent to the electron beam above the specimen hot stage, as shown in Figure 1.


Author(s):  
R. Levi-Setti ◽  
J. M. Chabala ◽  
Y. L. Wang

We have shown the feasibility of 20 nm lateral resolution in both topographic and elemental imaging using probes of this size from a liquid metal ion source (LMIS) scanning ion microprobe (SIM). This performance, which approaches the intrinsic resolution limits of secondary ion mass spectrometry (SIMS), was attained by limiting the size of the beam defining aperture (5μm) to subtend a semiangle at the source of 0.16 mr. The ensuing probe current, in our chromatic-aberration limited optical system, was 1.6 pA with Ga+ or In+ sources. Although unique applications of such low current probes have been demonstrated,) the stringent alignment requirements which they imposed made their routine use impractical. For instance, the occasional tendency of the LMIS to shift its emission pattern caused severe misalignment problems.


1989 ◽  
Vol 50 (C8) ◽  
pp. C8-175-C8-177 ◽  
Author(s):  
N. M. MISKOVSKY ◽  
J. HE ◽  
P. H. CUTLER ◽  
M. CHUNG
Keyword(s):  

1989 ◽  
Vol 50 (C1) ◽  
pp. C1-807-C1-811 ◽  
Author(s):  
P. McNEELY ◽  
G. ROY ◽  
J. SOUKUP ◽  
J. M. D'AURIA ◽  
L. BUCHMANN ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document