scholarly journals Raman spectra of interface phonons in long-period AlN/GaN superlattices as a tool for determination of the structure period

2019 ◽  
Vol 1400 ◽  
pp. 066003
Author(s):  
V Yu Davydov ◽  
A N Smirnov ◽  
I A Eliseyev ◽  
S I Rodin ◽  
E E Zavarin ◽  
...  
Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3983
Author(s):  
Ozren Gamulin ◽  
Marko Škrabić ◽  
Kristina Serec ◽  
Matej Par ◽  
Marija Baković ◽  
...  

Gender determination of the human remains can be very challenging, especially in the case of incomplete ones. Herein, we report a proof-of-concept experiment where the possibility of gender recognition using Raman spectroscopy of teeth is investigated. Raman spectra were recorded from male and female molars and premolars on two distinct sites, tooth apex and anatomical neck. Recorded spectra were sorted into suitable datasets and initially analyzed with principal component analysis, which showed a distinction between spectra of male and female teeth. Then, reduced datasets with scores of the first 20 principal components were formed and two classification algorithms, support vector machine and artificial neural networks, were applied to form classification models for gender recognition. The obtained results showed that gender recognition with Raman spectra of teeth is possible but strongly depends both on the tooth type and spectrum recording site. The difference in classification accuracy between different tooth types and recording sites are discussed in terms of the molecular structure difference caused by the influence of masticatory loading or gender-dependent life events.


1989 ◽  
Vol 79 (2) ◽  
pp. 493-499
Author(s):  
Stuart A. Sipkin

Abstract The teleseismic long-period waveforms recorded by the Global Digital Seismograph Network from the two largest Superstition Hills earthquakes are inverted using an algorithm based on optimal filter theory. These solutions differ slightly from those published in the Preliminary Determination of Epicenters Monthly Listing because a somewhat different, improved data set was used in the inversions and a time-dependent moment-tensor algorithm was used to investigate the complexity of the main shock. The foreshock (origin time 01:54:14.5, mb 5.7, Ms 6.2) had a scalar moment of 2.3 × 1025 dyne-cm, a depth of 8 km, and a mechanism of strike 217°, dip 79°, rake 4°. The main shock (origin time 13:15:56.4, mb 6.0, Ms 6.6) was a complex event, consisting of at least two subevents, with a combined scalar moment of 1.0 × 1026 dyne-cm, a depth of 10 km, and a mechanism of strike 303°, dip 89°, rake −180°.


1990 ◽  
Vol 80 (5) ◽  
pp. 1205-1231
Author(s):  
Jiajun Zhang ◽  
Thorne Lay

Abstract Determination of shallow earthquake source mechanisms by inversion of long-period (150 to 300 sec) Rayleigh waves requires epicentral locations with greater accuracy than that provided by routine source locations of the National Earthquake Information Center (NEIC) and International Seismological Centre (ISC). The effects of epicentral mislocation on such inversions are examined using synthetic calculations as well as actual data for three large Mexican earthquakes. For Rayleigh waves of 150-sec period, an epicentral mislocation of 30 km introduces observed source spectra phase errors of 0.6 radian for stations at opposing azimuths along the source mislocation vector. This is larger than the 0.5-radian azimuthal variation of the phase spectra at the same period for a thrust fault with 15° dip and 24-km depth. The typical landward mislocation of routinely determined epicenters of shallow subduction zone earthquakes causes source moment tensor inversions of long-period Rayleigh waves to predict larger fault dip than indicated by teleseismic P-wave first-motion data. For dip-slip earthquakes, inversions of long-period Rayleigh waves that use an erroneous source location in the down-dip or along-strike directions of a nodal plane, overestimate the strike, dip, and slip of that nodal plane. Inversions of strike-slip earthquakes that utilize an erroneous location along the strike of a nodal plane overestimate the slip of that nodal plane, causing the second nodal plane to dip incorrectly in the direction opposite to the mislocation vector. The effects of epicentral mislocation for earthquakes with 45° dip-slip fault mechanisms are more severe than for events with other fault mechanisms. Existing earth model propagation corrections do not appear to be sufficiently accurate to routinely determine the optimal surface-wave source location without constraints from body-wave information, unless extensive direct path (R1) data are available or empirical path calibrations are performed. However, independent surface-wave and body-wave solutions can be remarkably consistent when the effects of epicentral mislocation are accounted for. This will allow simultaneous unconstrained body-wave and surface-wave inversions to be performed despite the well known difficulties of extracting the complete moment tensor of shallow sources from fundamental modes.


2020 ◽  
Vol 553 ◽  
pp. 119793
Author(s):  
Christoph Helo ◽  
Jonathan M. Castro ◽  
Kai-Uwe Hess ◽  
Donald B. Dingwell

1. Any estimate of the rigidity of the Earth must be based partly on some observations from which a deformation of the Earth’s surface can be inferred, and partly on some hypothesis as to the internal constitution of the Earth. The observations may be concerned with tides of long period, variations of the vertical, variations of latitude, and so on. The hypothesis must relate to the arrangement of the matter as regards density in different parts, and to the state of the parts in respect of solidity, compressibility, and so on. In the simplest hypothesis, the one on which Lord Kelvin’s well-known, estimate was based, the Earth is treated as absolutely incompressible and of uniform density and rigidity. This hypothesis was adopted to simplify the problem, not because it is a true one. No matter is absolutely incompressible, and, the Earth is not a body of uniform density. It cannot be held to be probable that it is a body of uniform rigidity. But when any part of the hypothesis, e. g ., the assumption of uniform density, is discarded, the estimate of rigidity is affected. Different estimates are obtained when different laws of density are assumed. Again, whatever hypothesis we adopt as regards the arrangement of the matter, so long as we consider the Earth to be absolutely incompressible and of uniform rigidity, different estimates of this rigidity are obtained by using observations of different phenomena. Variations of the vertical may give one value, variations of latitude a notably different value. It follows that “the rigidity of the Earth” is not a definite physical constant. But there are two determinate constant numbers related to the methods that have been used for obtaining estimates of the rigidity of the Earth. One of these numbers specifies the amount by which the surface of the Earth yields to forces of the type of the tide-generating attractions of the Sun and Moon. The other number specifies the amount by which the potential of the Earth is altered through the rearrangement of the matter within it when this matter is displaced by the deforming influence of the Sun and Moon. If we adopt the ordinarily-accepted theory of the Figure of the Earth, the so-called theory of “fluid equilibrium,” and if we make the very probable assumption that the physical constants of the matter within the Earth, such as the density or the incompressibility, are nearly uniform over any spherical surface having its centre at the Earth’s centre, we can determine both these numbers without introducing any additional hypothesis as to the law of density or the state of the matter. We shall find, in fact, that observations of variations of latitude lead to a determination of the number related to the inequality of potential, and that, when this number is known, observations of variations of the vertical lead to a determination of the number related to the inequality of figure. [ Note added , December 15, 1908.—This statement needs, perhaps, some additional qualification. It is assumed that, in calculating the two numbers from the two kinds of observations, we may adopt an equilibrium theory of the deformations produced in the Earth by the corresponding forces. If the constitution of the Earth is really such that an equilibrium theory of the effects produced in it by these forces is inadequate, we should expect a marked discordance of phase between the inequality of figure produced and the force producing it. Now Hecker’s observations, cited in § 6 below, show that, in the case of the semidiurnal term in the variation of the vertical due to the lunar deflexion of gravity, the agreement of phase is close. If, however, an equilibrium theory is adequate, as it appears to be, for the semidiurnal corporeal tide, a similar theory must be adequate for the corporeal tides of long period and for the variations of latitude.]


2010 ◽  
Vol 65 (3) ◽  
pp. 165-167 ◽  
Author(s):  
H. Gerding ◽  
H. J. Prins ◽  
G. W. A. Rijnders
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document