scholarly journals Game Problem and Nash Equilibrium in the Electronic Payment Market with Multi-agent Participation

2020 ◽  
Vol 1486 ◽  
pp. 062011
Author(s):  
Qiudan Xing ◽  
Jiahao Ma
2021 ◽  
Vol 22 (2) ◽  
pp. 1-38
Author(s):  
Julian Gutierrez ◽  
Paul Harrenstein ◽  
Giuseppe Perelli ◽  
Michael Wooldridge

We define and investigate a novel notion of expressiveness for temporal logics that is based on game theoretic equilibria of multi-agent systems. We use iterated Boolean games as our abstract model of multi-agent systems [Gutierrez et al. 2013, 2015a]. In such a game, each agent  has a goal  , represented using (a fragment of) Linear Temporal Logic ( ) . The goal  captures agent  ’s preferences, in the sense that the models of  represent system behaviours that would satisfy  . Each player controls a subset of Boolean variables , and at each round in the game, player is at liberty to choose values for variables in any way that she sees fit. Play continues for an infinite sequence of rounds, and so as players act they collectively trace out a model for , which for every player will either satisfy or fail to satisfy their goal. Players are assumed to act strategically, taking into account the goals of other players, in an attempt to bring about computations satisfying their goal. In this setting, we apply the standard game-theoretic concept of (pure) Nash equilibria. The (possibly empty) set of Nash equilibria of an iterated Boolean game can be understood as inducing a set of computations, each computation representing one way the system could evolve if players chose strategies that together constitute a Nash equilibrium. Such a set of equilibrium computations expresses a temporal property—which may or may not be expressible within a particular fragment. The new notion of expressiveness that we formally define and investigate is then as follows: What temporal properties are characterised by the Nash equilibria of games in which agent goals are expressed in specific fragments of  ? We formally define and investigate this notion of expressiveness for a range of fragments. For example, a very natural question is the following: Suppose we have an iterated Boolean game in which every goal is represented using a particular fragment of : is it then always the case that the equilibria of the game can be characterised within ? We show that this is not true in general.


Author(s):  
Karl Tuyls ◽  
Julien Perolat ◽  
Marc Lanctot ◽  
Edward Hughes ◽  
Richard Everett ◽  
...  

AbstractThis paper provides several theoretical results for empirical game theory. Specifically, we introduce bounds for empirical game theoretical analysis of complex multi-agent interactions. In doing so we provide insights in the empirical meta game showing that a Nash equilibrium of the estimated meta-game is an approximate Nash equilibrium of the true underlying meta-game. We investigate and show how many data samples are required to obtain a close enough approximation of the underlying game. Additionally, we extend the evolutionary dynamics analysis of meta-games using heuristic payoff tables (HPTs) to asymmetric games. The state-of-the-art has only considered evolutionary dynamics of symmetric HPTs in which agents have access to the same strategy sets and the payoff structure is symmetric, implying that agents are interchangeable. Finally, we carry out an empirical illustration of the generalised method in several domains, illustrating the theory and evolutionary dynamics of several versions of the AlphaGo algorithm (symmetric), the dynamics of the Colonel Blotto game played by human players on Facebook (symmetric), the dynamics of several teams of players in the capture the flag game (symmetric), and an example of a meta-game in Leduc Poker (asymmetric), generated by the policy-space response oracle multi-agent learning algorithm.


Author(s):  
Johann Bauer ◽  
Mark Broom ◽  
Eduardo Alonso

The multi-population replicator dynamics is a dynamic approach to coevolving populations and multi-player games and is related to Cross learning. In general, not every equilibrium is a Nash equilibrium of the underlying game, and the convergence is not guaranteed. In particular, no interior equilibrium can be asymptotically stable in the multi-population replicator dynamics, e.g. resulting in cyclic orbits around a single interior Nash equilibrium. We introduce a new notion of equilibria of replicator dynamics, called mutation limits, based on a naturally arising, simple form of mutation, which is invariant under the specific choice of mutation parameters. We prove the existence of mutation limits for a large class of games, and consider a particularly interesting subclass called attracting mutation limits. Attracting mutation limits are approximated in every (mutation-)perturbed replicator dynamics, hence they offer an approximate dynamic solution to the underlying game even if the original dynamic is not convergent. Thus, mutation stabilizes the system in certain cases and makes attracting mutation limits near attainable. Hence, attracting mutation limits are relevant as a dynamic solution concept of games. We observe that they have some similarity to Q-learning in multi-agent reinforcement learning. Attracting mutation limits do not exist in all games, however, raising the question of their characterization.


2018 ◽  
Vol 35 (05) ◽  
pp. 1850033
Author(s):  
Guoqiang Fan ◽  
Qingqin Nong

In this paper, we consider a scheduling problem with [Formula: see text] uniform parallel-batching machines [Formula: see text] under game situation. There are [Formula: see text] jobs, each of which is associated with a load. Each machine [Formula: see text] has a speed [Formula: see text] and can handle up to [Formula: see text] jobs simultaneously as a batch. The load of a batch is the load of the longest job in the batch. All the jobs in a batch start and complete at the same time. Each job is owned by an agent and its individual cost is the completion time of the job. The social cost is the largest completion time over all jobs, i.e., the makespan. We design a coordination mechanism for the scheduling game problem. We discuss the existence of Nash Equilibrium and offer an upper bound on the price of anarchy (POA) of the coordination mechanism. We present a greedy algorithm and show that: (i) under the coordination mechanism, any instance of the scheduling game problem has a unique Nash Equilibrium and it is precisely the schedule returned by the greedy algorithm; (ii) the mechanism has a POA no more than [Formula: see text], where [Formula: see text], [Formula: see text], and [Formula: see text] is a small positive number that tends to 0.


2017 ◽  
Vol 20 (5) ◽  
pp. 475-491 ◽  
Author(s):  
Cyril Briand ◽  
Sandra Ulrich Ngueveu ◽  
Přemysl Šůcha

Sign in / Sign up

Export Citation Format

Share Document