scholarly journals Improve performance of soy protein adhesives with a low molar ratio melamine-urea-formaldehyde resin

2020 ◽  
Vol 1549 ◽  
pp. 032083
Author(s):  
Ke Jiang ◽  
Jialin Zhang ◽  
Sanshan Xia ◽  
Chuan Ou ◽  
Chengang Fu ◽  
...  
Author(s):  
С.Н. Вьюнков ◽  
В.В. Васильев

Разработана методика химического анализа компонента карбамидоформальдегидной смолы (КФС), нерастворимого в воде. Синтезировали смолу при мольном соотношении исходных компонентов карбамид : формальдегид = 1 : 2, температуре 90 °С, начальной рН = 7,0…8,0, рН на кислой стадии 4,0…4,3. Для выделения водонерастворимого компонента КФС смешивали с большим количеством воды. Осадок промывали водой и растворяли в растворе йодида калия концентрацией 40%. В полученном растворе проводили окисление гидроксиметильных групп и свободного формальдегида йодом в щелочной среде. Избыток йода оттитровывали раствором тиосульфата натрия. В результате реакции образовывался белый хлопьевидный осадок, который отфильтровывали и подвергали анализу. В образце проводили определение общего содержания формальдегида и карбамида. Для этого анализируемый состав помещали в круглодонную колбу, снабженную прямым холодильником и капельной воронкой. В капельную воронку вливали отмеренное количество 45%-й фосфорной кислоты и по каплям добавляли ее в колбу. Колбу нагревали на металлической плитке, собирали выделяющийся формальдегид и сопутствующую воду в мерную колбу. После окончания процесса проводили определение выделившегося формальдегида. Определение карбамида осуществляли, используя уреазно-гипохлоритный метод, при котором уреаза гидролизует оставшийся карбамид до аммиака и двуокиси углерода. Далее весь образовавшийся аммиак определяли по его цветной реакции с гипохлоритом натрия и пересчитывали на карбамид. Разделив полученные массы карбамида и формальдегида на их молекулярные массы получили мольное соотношение карбамид : формальдегид в нерастворимом осадке, равное 1 : 1,5. Наименьшей молекулой, отвечающей этому условию, является олигомер, в котором четыре молекулы карбамида соединены тремя метиленэфирными связями, т. е. содержат шесть молекул формальдегида. Однако олигомеры с небольшой молекулярной массой хорошо растворимы в воде. К водонерастворимым относятся олигомеры с большой массой, значительно превышающей средний уровень. Расчёты показали, что среднее число звеньев из карбамида и метиленэфирной связи в олигомерах КФС составляет 10, а максимальное может доходить до 122. Исследование процесса отверждения компонента КФС, нерастворимого в воде, методом дифференциального термического анализа показало, что оно так же, как и КФС, проходит в три стадии. Однако температуры эндотермических пиков отличаются. Так, пик второй стадии отверждения КФС отмечен на уровне 241,0 °С, а для олигомера, нерастворимого в воде, он соответствует 244,2 °С. Ещё большие различия в температурах пиков третьей стадии отверждения: для КФС он 274,4 °С, для олигомера, нерастворимого в воде, 288,2 °С. Очевидно, что олигомер, нерастворимый в воде, значительно замедляет процесс отверждения КФС. A method of chemical analysis of a component of urea-formaldehyde resin (UFR) which is insoluble in water has been developed. The resin was synthesized at the molar ratio of the starting components urea : formaldehyde = 1 : 2, temperature 90 °С, initial pH = 7,0...8,0 pH in acidic stage 4,0...4,3. For isolation of the water-insoluble component, UFR was mixed with a large amount of water. The precipitate was washed with water and dissolved in a 40% potassium iodide solution. In the resulting solution, hydroxymethyl groups and free formaldehyde were oxidized with iodine in an alkaline medium. Excess of iodine was titrated with a solution of sodium thiosulfate. As a result of the reaction, a white flake-like precipitate was formed, which was filtered out and analyzed. The total content of formaldehyde and urea was determined in the sample. To do this, the analyzed composition was placed in a round-bottomed flask equipped with a direct condenser and a dropping funnel. A measured amount of 45% phosphoric acid was poured into the dropping funnel and added drop by drop to the flask. The flask was heated on a metal tile, and the released formaldehyde and accompanying water were collected in a measuring flask. After the end of the process, the released formaldehyde was determined. Urea was determined using the urease- hypochlorite method, in which urease hydrolyzes the remaining urea to ammonia and carbon dioxide. Then all the formed ammonia was determined by its color reaction with sodium hypochlorite and converted to urea. Separating the obtained masses of urea and formaldehyde by their molecular masses, we obtained a molar ratio of urea : formaldehyde in an insoluble precipitate equal to 1: 1.5. The smallest molecule that meets this condition is an oligomer in which four carbamide molecules are connected with three methylenester bonds, i.e. they contain six formaldehyde molecules. However, oligomers with a small molecular weight were highly soluble in water. Water-insoluble oligomers are those with a large mass that is significantly higher than the average level. Calculations showed that the average number of urea and methylene-ether links in UFR oligomers was 10, while the maximum number can reach 122. The study of the curing process of the UFR component, insoluble in water, by differential thermal analysis showed that it, like UFR, took place in three stages. However, the temperatures of endothermic peaks differed. Thus, the peak of the second stage of UFR curing was found at the level of 241.0 °C, and for an oligomer that was insoluble in water, it corresponded to 244.2 °C. There were even greater differences in the peak temperatures of the third stage of curing: 274.4 °C for UFR an,288.2 °C for the water-insoluble oligomer. It has been obvious that the water-insoluble oligomer significantly has slowed down the UFR curing process.


Author(s):  
Д.В. Иванов ◽  
С.В. Шевченко ◽  
М.А. Екатеринчева

Исследованы продукты взаимодействия лимонной кислоты, карбамида и аммиака как компоненты карбамидоформальдегидного связующего. Установлено, что полученные соли выступают в качестве отвердителей карбамидоформальдегидной смолы, обладая свойствами прямых и латентных катализаторов отверждения. Из-за низкого значения pH они обеспечивают значительное подкисление связующего сразу после совмещения со смолой, таким образом, действуя как прямые катализаторы отверждения. При этом замещение ионов водорода некоторых карбоксильных групп лимонной кислоты на ион аммония позволяет им обеспечивать снижение значения pH связующего во времени, что является признаком латентных катализаторов. Корреляционной обработкой экспериментальных данных установлено, что величина изменения значения pH связующего во времени на 99 определяется количеством аммиака в рецептуре отвердителя. Наиболее ярко свойства латентного катализатора выражены у отвердителя, синтезированного при мольном соотношении лимонная кислота : карбамид : аммиак - 1 : 1,5 :1,5, получившего рабочее название МО-1,5. В условиях изготовления однослойных древесностружечных плит МО-1,5 способен обеспечивать достаточную глубину отверждения смолы и служить заменой традиционным отвердителям. Он наиболее эффективен во внутреннем слое изготавливаемых плит, о чём свидетельствует повышенная прочность при растяжении перпендикулярно пласти. Плиты, изготовленные с использованием МО-1,5, по сравнению с плитами, изготовленными с использованием традиционного отвердителя - сульфата аммония, обладают на 2040 меньшим содержанием формальдегида. Таким образом, МО-1,5 выступает и как модификатор карбамидоформальдегидной смолы, снижающий токсичность готовых плит. Products of interaction of citric acid, urea and ammonia have been researched as components of urea-formaldehyde glue. Obtained salts have properties of direct and latent catalysts of hardening and can perform as hardeners of urea-formaldehyde resin. Because of low pH value they increase acidity of the glue immediately after combining with resin and act like direct catalysts of hardening. Wherein substitution of hydrogen ions of some carboxyl groups belonging to citric acid on ammonium ions allows to provide a gradual decrease of glue pH value thus they act like latent catalysts. The correlative processing of data has revealed that the change of pH value 99 depends on the amount of ammonia in the hardener formula.The properties of latent catalysts express mostly when hardener is synthesized at molar ratio of citric acid : urea : ammonia - 1 : 1,5 : 1,5, the hardener has been named МО-1,5. During manufacturing of single layer particleboard МО-1,5 is able to provide the necessary depth of resin hardening so it can serve as a substitute to traditional latent catalysts. It is the most effective in the inner layer of manufactured boards, as evidenced by high tensile strength perpendicularly to plane. In comparison with wooden boards manufactured with such traditional hardener as ammonia sulfate wooden boards manufactured with МО-1,5 have 20...40 lower formaldehyde content. Thus МО-1,5 performs also as a modifier of urea-formaldehyde resin providing lower toxicity of wooden board.


2020 ◽  
Vol 1001 ◽  
pp. 61-66
Author(s):  
Shan Feng Xu ◽  
San Shan Xia ◽  
Yu Zhu Chen ◽  
Hui Xiao ◽  
Ming Wei Jing ◽  
...  

In this study, Thermogravimetry (TG) were used to analyze thermal degradation properties of two kinds of low-molar ratio of the melamine-modified urea-formaldehyde resin (MUF). The MUF was calculated using Kissinger equation and Flynn-Wall-Ozawa equation Resin pyrolysis activation energy. The results showed that the curing time of low mole was longer than that of MUF resin (muf-b), the content of free formaldehyde was lower, and the formaldehyde emission and wet bonding strength of plywood were reduced by 65.79% and 21.90%, respectively. TG test showed that the pyrolysis process of MUF resins with different molar ratios can be divided into three stages: dehydration, rapid pyrolysis and carbonization. At the same heating rate, the weight loss rate, peak conversion rate and carbon residue of the high molar ratio MUF resin (MUF-a) in the fast pyrolysis stage are larger than those of the MUF-b resin. The MUF-a resin pyrolysis activation energy is 166.76 kJ/mol, and the MUF-b resin pyrolysis activation energy is 95.30 kJ/mol. High molar ratio resin has higher pyrolysis activation energy and better thermal stability.


2011 ◽  
Vol 71-78 ◽  
pp. 3170-3173
Author(s):  
Ji Zhi Zhang ◽  
Xiao Ying Liu ◽  
Ying Ying Qiu ◽  
Xiao Mei Wang ◽  
Jian Zhang Li ◽  
...  

Urea-formaldehyde resin was modified by a modifier with different synthetic processes labelled as UFM1, UFM2, and UFM3 respectively. As a comparison, normal UF resin with a F/U molar ratio of 1.1 labelled as UF0 was synthesized. The thermal behavior of modified urea-formaldehyde resins was studied by TG-DTA techniques, and the properties of plywood bonded with the UFM resins were investigated. The conclusions were as follows: (1) the modifier used in this study could significantly reduce the free formaldehyde content of urea-formaldehyde resin and the formaldehyde emission of plywood; (2) The exothermic peak temperatures of DTA curve were 129.37, 125.05, 120.98, and 116.11 °C for UF0, UFM1, UFM2, and UFM3 respectively. (3) The plywood manufactured with UFM2 and UFM3 resins have high bonding strength (1.28MPa and 1.59MPa) and low formaldehyde emission value (E1 grade).


2010 ◽  
Vol 113-116 ◽  
pp. 1787-1791 ◽  
Author(s):  
Jiu Yin Pang ◽  
Chuan Sun ◽  
Shi Cheng Zhang ◽  
Hai Xing Cui

As the main adhesive types in wood-based panel industry,urea-formaldehyde has such shortcomings as high levels of free formaldehyde content and formaldehyde emission of its bonding product. In this experiment, we try to modify urea-formaldehyde resin with keratin through copolymerization reaction. Through the determination of such reaction technology as molar ratio, adding sequence of keratin and adding amount of keratin, we finally synthesized the low toxic urea resin. The results show that the optimum molar ratio is 1.3:1, the adding amount of keratin is 5% and adding keratin after the third feeding of urea is the best choice. By optimizing the synthesis process, we ultimately get the low toxicity modified urea-formaldehyde resin. At the same time, modified urea-formaldehyde resin cost has been reduced because extensive sources of keratin and low cost.


2013 ◽  
Vol 774-776 ◽  
pp. 1232-1236
Author(s):  
Nan Zhe Zhang

In order to prepare urea-formaldehyde (UF) resin adhesive with good performance for glass wool products, we used polyvinyl alcohol (PVA), p-toluenesulfonamide (PTSA) and methanol to modify UF resin, optimized the molar ratio of formaldehyde (F) / urea (U) and reaction components ratio by orthogonal test, reduced the content of free formaldehyde in UF resin, and enhanced the water resistance, flexibility and stability of UF resin.


2012 ◽  
Vol 490-495 ◽  
pp. 3476-3480 ◽  
Author(s):  
Zhen Zhong Gao ◽  
Chao Yue ◽  
Hai Bo Cao ◽  
Xiao Bo Wang ◽  
Xiao Feng Zhu ◽  
...  

Low formaldehyde emission and high bonding strength were two basic criterions of a good urea-formaldehyde resin adhesive (UFRA). In our study, melamine modified methylolurea solution (MUS), was synthesized and used as modifier for UFRA. The bonding strength and formaldehyde emission of urea-formaldehyde resin adhesives(UFRA) were influenced by some factors such as F/U molar ratio of the main resin, F/U molar ratio of modifier, melamine content, mixing ratio of main resin with modifier, which were investigated by a series of single-factor experiments. The results showed that the best adhesive bonding strength of UFRA was 0.93MPa and the lowest formaldehyde emission was 0.43mg / L, when F/U molar ratio of the main resin was 1.5, F/U molar ratio of the MUS was 0.5, the mass fraction of melamine addition level was 5wt.% of MUS, and the mixing mass ratio of methylolurea solution (MUS) to the main UF resin was 20:80.


Author(s):  
Shanfeng Xu ◽  
Sanshan Xia ◽  
Yuzhu Chen ◽  
Hui Xiao ◽  
Maoyu Yi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document