scholarly journals A robust adaptive control method for reactive power of doubly-fed induction wind generator

2020 ◽  
Vol 1601 ◽  
pp. 042029
Author(s):  
Xiaosuo Luo
2020 ◽  
Vol 10 (12) ◽  
pp. 4270
Author(s):  
Jiao Chen ◽  
Jiangyun Wang ◽  
Weihong Wang

Model reference adaptive control (MRAC) schemes are known as an effective method to deal with system uncertainties. High adaptive gains are usually needed in order to achieve fast adaptation. However, this leads to high-frequency oscillation in the control signal and may even make the system unstable. A robust adaptive control architecture was designed in this paper for nonlinear aircraft dynamics facing the challenges of input uncertainty, matched uncertainty, and unmatched uncertainty. By introducing a robust compensator to the MRAC framework, the high-frequency components in the control response were eliminated. The proposed control method was applied to the longitudinal-direction motion control of a nonlinear aircraft system. Flight simulation results demonstrated that the proposed robust adaptive method was able to achieve fast adaptation without high-frequency oscillations, and guaranteed transient performance.


Mechanika ◽  
2011 ◽  
Vol 17 (5) ◽  
Author(s):  
Y. Zuo ◽  
Y. N. Wang ◽  
Y. Zhang ◽  
Z. L. Shen ◽  
Z. S. Chen ◽  
...  

2012 ◽  
Vol 608-609 ◽  
pp. 785-789 ◽  
Author(s):  
Xian Ming Zou ◽  
Jun Yang ◽  
Hongyu Zhang ◽  
Yu Zhu

Aiming at the phenomenon that the doubly fed induction generator (DFIG) can supply active power and absorb reactive power in the range of normal operation involves stability and transient, this paper proposes a novel method based on the fuzzy self-adaption PI control to control TCR to compensate the reactive power of wind farms required, and to improve the stability of voltage in wind farms. In this research, the wind generator model of being regarded as reactive load is established in Simulink of MATLAB. The results show that: the voltage and current distortion of the wind generator can be restrained well by using the SVC system proposed in this paper, and the stability of voltage and current in wind farms can be improved effectively.


2014 ◽  
Vol 2014 ◽  
pp. 1-8
Author(s):  
Huabin Wen ◽  
Yu Zeng ◽  
Lei Wang ◽  
Feng Yang ◽  
Y. D. Song

The problem of reactive power control for mains-side inverter (MSI) in doubly fed induction generator (DFIG) is studied in this paper. To accommodate the modelling nonlinearities and inherent uncertainties, a novel robust adaptive control algorithm for MSI is proposed by utilizing Lyapunov theory that ensures asymptotic stability of the system under unpredictable external disturbances and significant parametric uncertainties. The distinguishing benefit of the aforementioned scheme consists in its capabilities to maintain satisfactory performance under varying operation conditions without the need for manually redesigning or reprogramming the control gains in contrast to the commonly used PI/PID control. Simulations are also built to confirm the correctness and benefits of the control scheme.


2014 ◽  
Vol 2014 ◽  
pp. 1-11
Author(s):  
Gaosheng Luo ◽  
Jiawang Chen ◽  
Linyi Gu

A robust adaptive control method with full-state feedback is proposed based on the fact that the elbow joint of a seven-function hydraulic manipulator with double-screw-pair transmission features the following control characteristics: a strongly nonlinear hydraulic system, parameter uncertainties susceptible to temperature and pressure changes of the external environment, and unknown outer disturbances. Combined with the design method of the back-stepping controller, the asymptotic stability of the control system in the presence of disturbances from uncertain systematic parameters and unknown external disturbances was demonstrated using Lyapunov stability theory. Based on the elbow joint of the seven-function master-slave hydraulic manipulator for the 4500 m Deep-Sea Working System as the research subject, a comparative study was conducted using the control method presented in this paper for unknown external disturbances. Simulations and experiments of different unknown outer disturbances showed that (1) the proposed controller could robustly track the desired reference trajectory with satisfactory dynamic performance and steady accuracy and that (2) the modified parameter adaptive laws could also guarantee that the estimated parameters are bounded.


Author(s):  
Hongqian Lu ◽  
Xu Zhang ◽  
Xianlin Huang

The design of nonlinear tracking controller for antagonistic tendon-driven joint has garnered considerable attention, whereas many existing control methodologies are impractical in the real-time applications due to complexity of computations. In this work, a robust adaptive control method for controlling antagonistic tendon-driven joint is mainly studied by combining adaptive control with mapping filtered forwarding technique. To enhance the robustness of the closed-loop systems, the true viscous friction coefficients are not needed to be known in our controller design. Typically, to tackle the problem of “explosion of complexity,” filters are introduced to bridge the virtual controls such that the controller is decomposed into several submodules. Mappings and their analytic derivatives are computed by these filters, and the mathematical operations of nonlinearities are greatly simplified. The block diagram of this controller of tendon-driven joint is provided, and controller performances are validated through simulations.


Sign in / Sign up

Export Citation Format

Share Document