scholarly journals 19B isotope as a 17B-n-n three-body cluster close to unitary limit

2020 ◽  
Vol 1643 ◽  
pp. 012120
Author(s):  
J. Carbonell ◽  
E. Hiyama ◽  
R. Lazauskas ◽  
F. M. Marqués
Keyword(s):  
Author(s):  
Jaume Carbonell ◽  
Emiko Hiyama ◽  
Rimantas Lazauskas ◽  
Francisco Miguel Marqués

We consider the evolution of the neutron-nucleus scattering length for the lightest nuclei. We show that, when increasing the number of neutrons in the target nucleus, the strong Pauli repulsion is weakened and the balance with the attractive nucleon-nucleon interaction results into a resonant virtual state in ^{18}18B. We describe ^{19}19B in terms of a ^{17}17B-nn-nn three-body system where the two-body subsystems ^{17}17B-nn and nn-nn are unbound (virtual) states close to the unitary limit. The energy of ^{19}19B ground state is well reproduced and two low-lying resonances are predicted. Their eventual link with the Efimov physics is discussed. This model can be extended to describe the recently discovered resonant states in ^{20,21}20,21B.


2020 ◽  
Author(s):  
Tokuro Hata ◽  
Yoshimichi Teratani ◽  
Tomonori Arakawa ◽  
Sanghyun Lee ◽  
Meydi Ferrier ◽  
...  

Abstract Understanding the properties of correlated quantum liquids is a fundamental issue of condensed matter physics. Even in such a correlated case, fascinatingly, we can tell that the equilibrium fluctuations of the system govern its linear response to an external field, relying on the fluctuation dissipation relations based on the two-body correlations. Going beyond, up to the three-body correlations, is of importance for van der Waals force [1], the three-body force in nuclei [2], the Efimov state [3, 4], the ring exchange interaction in solid 3He [5, 6], and frustrated spin systems [7]. In our work, we have used a quantum dot in the Kondo regime, which is a controllable realization of such a correlated quantum liquid [8–11]. Thanks to the quality of our sample, where the Kondo effect in the unitary limit was achieved, we could quantitatively measure the three-body correlations and their role in the non-equilibrium regime, in perfect agreement with recent results of the Fermi liquid theory [12– 15]. In particular, we have demonstrated its importance when time-reversal symmetry is broken, solving a long-standing puzzle of the Kondo systems under the magnetic field [13]. The demonstrated method to relate three-body correlation and non-equilibrium transport opens up a way for further investigation of the dynamics of quantum many-body systems.


2018 ◽  
Vol 175 ◽  
pp. 11006
Author(s):  
Akaki Rusetsky ◽  
Hans-Werner Hammer ◽  
Jin-Yi Pang

The three-particle quantization condition is derived, using the particle-dimer picture in the non-relativistic effective field theory. The procedure for the extraction of various observables in the three-particle sector (the particle-dimer scattering amplitudes, breakup amplitudes, etc.) from the finite-volume lattice spectrum is discussed in detail. As an illustration of the general formalism, the expression for the finite-volume energy shift of the three-body bound-state in the unitary limit is re-derived. The role of the threebody force, which is essential for the renormalization, is highlighted, and the extension of the result beyond the unitary limit is studied. Comparison with other approaches, known in the literature, is carried out.


2019 ◽  
Vol 100 (1) ◽  
Author(s):  
Emiko Hiyama ◽  
Rimantas Lazauskas ◽  
F. Miguel Marqués ◽  
Jaume Carbonell
Keyword(s):  

Author(s):  
A. Kievsky ◽  
A. Polls ◽  
B. Juliá-Díaz ◽  
N. Timofeyuk ◽  
M. Gattobigio
Keyword(s):  

2017 ◽  
Vol 915 ◽  
pp. 012002
Author(s):  
Lauro Tomio ◽  
M A Shalchi ◽  
M T Yamashita ◽  
M R Hadizadeh ◽  
T Frederico

1979 ◽  
Vol 40 (C7) ◽  
pp. C7-103-C7-104
Author(s):  
A. N. Vasilieva ◽  
I. A. Grishina ◽  
V. I. Ktitorov ◽  
A. S. Kovalev ◽  
A. T. Rakhimov

Sign in / Sign up

Export Citation Format

Share Document