scholarly journals Three-body correlations in nonlinear response of correlated quantum liquid

2020 ◽  
Author(s):  
Tokuro Hata ◽  
Yoshimichi Teratani ◽  
Tomonori Arakawa ◽  
Sanghyun Lee ◽  
Meydi Ferrier ◽  
...  

Abstract Understanding the properties of correlated quantum liquids is a fundamental issue of condensed matter physics. Even in such a correlated case, fascinatingly, we can tell that the equilibrium fluctuations of the system govern its linear response to an external field, relying on the fluctuation dissipation relations based on the two-body correlations. Going beyond, up to the three-body correlations, is of importance for van der Waals force [1], the three-body force in nuclei [2], the Efimov state [3, 4], the ring exchange interaction in solid 3He [5, 6], and frustrated spin systems [7]. In our work, we have used a quantum dot in the Kondo regime, which is a controllable realization of such a correlated quantum liquid [8–11]. Thanks to the quality of our sample, where the Kondo effect in the unitary limit was achieved, we could quantitatively measure the three-body correlations and their role in the non-equilibrium regime, in perfect agreement with recent results of the Fermi liquid theory [12– 15]. In particular, we have demonstrated its importance when time-reversal symmetry is broken, solving a long-standing puzzle of the Kondo systems under the magnetic field [13]. The demonstrated method to relate three-body correlation and non-equilibrium transport opens up a way for further investigation of the dynamics of quantum many-body systems.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Tokuro Hata ◽  
Yoshimichi Teratani ◽  
Tomonori Arakawa ◽  
Sanghyun Lee ◽  
Meydi Ferrier ◽  
...  

AbstractBehavior of quantum liquids is a fascinating topic in physics. Even in a strongly correlated case, the linear response of a given system to an external field is described by the fluctuation-dissipation relations based on the two-body correlations in the equilibrium. However, to explore nonlinear non-equilibrium behaviors of the system beyond this well-established regime, the role of higher order correlations starting from the three-body correlations must be revealed. In this work, we experimentally investigate a controllable quantum liquid realized in a Kondo-correlated quantum dot and prove the relevance of the three-body correlations in the nonlinear conductance at finite magnetic field, which validates the recent Fermi liquid theory extended to the non-equilibrium regime.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
T. M. Wintermantel ◽  
M. Buchhold ◽  
S. Shevate ◽  
M. Morgado ◽  
Y. Wang ◽  
...  

AbstractWhether it be physical, biological or social processes, complex systems exhibit dynamics that are exceedingly difficult to understand or predict from underlying principles. Here we report a striking correspondence between the excitation dynamics of a laser driven gas of Rydberg atoms and the spreading of diseases, which in turn opens up a controllable platform for studying non-equilibrium dynamics on complex networks. The competition between facilitated excitation and spontaneous decay results in sub-exponential growth of the excitation number, which is empirically observed in real epidemics. Based on this we develop a quantitative microscopic susceptible-infected-susceptible model which links the growth and final excitation density to the dynamics of an emergent heterogeneous network and rare active region effects associated to an extended Griffiths phase. This provides physical insights into the nature of non-equilibrium criticality in driven many-body systems and the mechanisms leading to non-universal power-laws in the dynamics of complex systems.


Author(s):  
Jaume Carbonell ◽  
Emiko Hiyama ◽  
Rimantas Lazauskas ◽  
Francisco Miguel Marqués

We consider the evolution of the neutron-nucleus scattering length for the lightest nuclei. We show that, when increasing the number of neutrons in the target nucleus, the strong Pauli repulsion is weakened and the balance with the attractive nucleon-nucleon interaction results into a resonant virtual state in ^{18}18B. We describe ^{19}19B in terms of a ^{17}17B-nn-nn three-body system where the two-body subsystems ^{17}17B-nn and nn-nn are unbound (virtual) states close to the unitary limit. The energy of ^{19}19B ground state is well reproduced and two low-lying resonances are predicted. Their eventual link with the Efimov physics is discussed. This model can be extended to describe the recently discovered resonant states in ^{20,21}20,21B.


Nanoscale ◽  
2018 ◽  
Vol 10 (37) ◽  
pp. 17738-17750 ◽  
Author(s):  
W. H. Appelt ◽  
A. Droghetti ◽  
L. Chioncel ◽  
M. M. Radonjić ◽  
E. Muñoz ◽  
...  

We predict the non-equilibrium molecular conductance in the Kondo regime from first principles by combining density functional theory with the renormalized super-perturbation theory.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Iliya Esin ◽  
Gaurav Kumar Gupta ◽  
Erez Berg ◽  
Mark S. Rudner ◽  
Netanel H. Lindner

AbstractFloquet engineering uses coherent time-periodic drives to realize designer band structures on-demand, thus yielding a versatile approach for inducing a wide range of exotic quantum many-body phenomena. Here we show how this approach can be used to induce non-equilibrium correlated states with spontaneously broken symmetry in lightly doped semiconductors. In the presence of a resonant driving field, the system spontaneously develops quantum liquid crystalline order featuring strong anisotropy whose directionality rotates as a function of time. The phase transition occurs in the steady state of the system achieved due to the interplay between the coherent external drive, electron-electron interactions, and dissipative processes arising from the coupling to phonons and the electromagnetic environment. We obtain the phase diagram of the system using numerical calculations that match predictions obtained from a phenomenological treatment and discuss the conditions on the system and the external drive under which spontaneous symmetry breaking occurs. Our results demonstrate that coherent driving can be used to induce non-equilibrium quantum phases of matter with dynamical broken symmetry.


2020 ◽  
Vol 11 (1) ◽  
Author(s):  
Federico S. Gnesotto ◽  
Grzegorz Gradziuk ◽  
Pierre Ronceray ◽  
Chase P. Broedersz

Abstract Time-lapse microscopy imaging provides direct access to the dynamics of soft and living systems. At mesoscopic scales, such microscopy experiments reveal intrinsic thermal and non-equilibrium fluctuations. These fluctuations, together with measurement noise, pose a challenge for the dynamical analysis of these Brownian movies. Traditionally, methods to analyze such experimental data rely on tracking embedded or endogenous probes. However, it is in general unclear, especially in complex many-body systems, which degrees of freedom are the most informative about their non-equilibrium nature. Here, we introduce an alternative, tracking-free approach that overcomes these difficulties via an unsupervised analysis of the Brownian movie. We develop a dimensional reduction scheme selecting a basis of modes based on dissipation. Subsequently, we learn the non-equilibrium dynamics, thereby estimating the entropy production rate and time-resolved force maps. After benchmarking our method against a minimal model, we illustrate its broader applicability with an example inspired by active biopolymer gels.


1998 ◽  
Vol 60 (2) ◽  
pp. 447-448 ◽  
Author(s):  
V. N. TSYTOVICH ◽  
R. BINGHAM ◽  
U. de ANGELIS ◽  
A. FORLANI

We reply here to a criticism of our paper (Tsytovich et al. 1996) by Iglesias (1997).In our paper we present a very general formulation of collective effects in bremsstrahlung that is valid for any non-equilibrium non-Maxwellian particle distribution. This result is given in (2.20) early in the paper. The standard treatments of bremsstrahlung found in books like Bekefi (1966) are only for thermal plasmas, where the fluctuation–dissipation theorem is valid. Note that the fluctuation–dissipation theorem cannot be used for non-thermal or non-dipole fields, and in this respect the method we use is more general. Our method is the more complex of the approaches used, but, as stated, it can handle situations that cannot be treated by the standard approach. Our main result is the formula (2.20), which is valid for any non-equilibrium non-Maxwellian particle distribution, and which cannot be found anywhere else in the literature. Furthermore, we find new qualitative effects indicating that the ion–ion bremsstrahlung (which is always neglected in the literature) is not small in the case where the collective effects are taken into account, and is in fact, for certain frequencies, of the order of the electron–electron bremsstrahlung. The other qualitatively new result is that, where collective effects are important, the electron–electron bremsstrahlung is not of the order v2Te/c2, as it is for the case in the absence of collective effects, but of the order ω2pe/ω2 times less – which, for example in the solar interior, where ω2pe/ω2 is of the order of v2Te/c2, is then of the order of v4Te/c4.


Sign in / Sign up

Export Citation Format

Share Document