An extended geminal calculation of the three-body potential for the ground state of the helium trimer

1996 ◽  
Vol 388 (1-3) ◽  
pp. 331-337 ◽  
Author(s):  
I Røeggen
Science ◽  
2019 ◽  
Vol 363 (6424) ◽  
pp. 261-264 ◽  
Author(s):  
Huan Yang ◽  
De-Chao Zhang ◽  
Lan Liu ◽  
Ya-Xiong Liu ◽  
Jue Nan ◽  
...  

Resonances in ultracold collisions involving heavy molecules are difficult to simulate theoretically and have proven challenging to detect. Here we report the observation of magnetically tunable Feshbach resonances in ultracold collisions between potassium-40 (40K) atoms and sodium-23–potassium-40 (23Na40K) molecules in the rovibrational ground state. We prepare the atoms and molecules in various hyperfine levels of their ground states and observe the loss of molecules as a function of the magnetic field. The atom-molecule Feshbach resonances are identified by observing an enhancement of the loss. We have observed 11 resonances in the magnetic field range of 43 to 120 gauss. The observed atom-molecule Feshbach resonances at ultralow temperatures probe the three-body potential energy surface with exceptional resolution and will help to improve understanding of ultracold collisions.


2005 ◽  
Vol 19 (30) ◽  
pp. 1793-1802 ◽  
Author(s):  
M. MODARRES

We investigate the possible angular momentum, l, dependence of the ground state energy of normal liquid 3 He . The method of lowest order constrained variational (LOCV) which includes the three-body cluster energy and normalization constraint (LOCVE) is used with angular momentum dependent two-body correlation functions. A functional minimization is performed with respect to each l-channel correlation function. It is shown that this dependence increases the binding energy of liquid 3 He by 8% with respect to calculations without angular momentum dependent correlation functions. The l=0 state has completely different behavior with respect to other l-channels. It is also found that the main contribution from potential energy comes from the l=1 state (p-waves) and the effect of l≥11 is less than about 0.1%. The effective interactions and two-body correlations in different channels are being discussed. Finally we conclude that this l-dependence can be verified experimentally by looking into the magnetization properties of liquid helium 3 and interatomic potentials.


2009 ◽  
Vol 193 (1-3) ◽  
pp. 147-151 ◽  
Author(s):  
K. V. Rodriguez ◽  
Y. V. Gonzalez ◽  
G. Gasaneo ◽  
L. U. Ancarani ◽  
D. M. Mitnik

2018 ◽  
Vol 181 ◽  
pp. 01013 ◽  
Author(s):  
Reinhard Alkofer ◽  
Christian S. Fischer ◽  
Hèlios Sanchis-Alepuz

The covariant Faddeev approach which describes baryons as relativistic three-quark bound states and is based on the Dyson-Schwinger and Bethe-Salpeter equations of QCD is briefly reviewed. All elements, including especially the baryons’ three-body-wave-functions, the quark propagators and the dressed quark-photon vertex, are calculated from a well-established approximation for the quark-gluon interaction. Selected previous results of this approach for the spectrum and elastic electromagnetic form factors of ground-state baryons and resonances are reported. The main focus of this talk is a presentation and discussion of results from a recent investigation of the electromagnetic transition form factors between ground-state octet and decuplet baryons as well as the octet-only Σ0 to Λ transition.


2021 ◽  
Vol 13 (3) ◽  
pp. 733-744
Author(s):  
P. K. DEBNATH

The zero-temperature ground state properties of experimental 87Rb condensate are studied in a harmonic plus quartic trap [ V(r) =  ½mω2r2 + λr4 ]. The anharmonic parameter (λ) is slowly tuned from harmonic to anharmonic. For each choice of λ, the many-particle Schrödinger equation is solved using the potential harmonic expansion method and determines the lowest effective many-body potential. We utilize the correlated two-body basis function, which keeps all possible two-body correlations. The use of van der Waals interaction gives realistic pictures. We calculate kinetic energy, trapping potential energy, interaction energy, and total ground state energy of the condensate in this confining potential, modelled experimentally. The motivation of the present study is to investigate the crucial dependency of the properties of an interacting quantum many-body system on λ. The average size of the condensate has also been calculated to observe how the stability of repulsive condensate depends on anharmonicity. In particular, our calculation presents a clear physical picture of the repulsive condensate in an anharmonic trap.


1992 ◽  
Vol 45 (1) ◽  
pp. 39 ◽  
Author(s):  
Rupayan Bhattacharya

The scenario of single particle (proton as well as neutron) states near the Fermi surface of 132Sn has been investigated on the basis of an average one-body potential suitably optimised for 208Pb and then extrapolated to the mass region concerned. The calculation shows excellent agreement with experiment. The ground state charge distribution of the nucleus has also been calculated.


Sign in / Sign up

Export Citation Format

Share Document