scholarly journals Individual Health and Safety Monitoring of Workers in Deep Underground Mines Using IOT

2021 ◽  
Vol 1717 ◽  
pp. 012044
Author(s):  
R. Suganya ◽  
S. Gowtham
Author(s):  
Ahmad F. Zueter ◽  
Minghan Xu ◽  
Mahmoud A. Alzoubi ◽  
Agus P. Sasmito

Abstract Building concentric tubes is one of biggest practical challenges in the construction of freeze-pipes of artificial ground freezing (AGF) applications for deep underground mines. In this study, the influence of tubes eccentricity on phase-front expansion (i.e., expansion of the frozen body) and energy consumption of AGF systems is analyzed. A 1+1D semi-conjugate model that solves two-phase transient energy conservation equation is derived. The model is firstly validated against experimental data and then verified with a fully-conjugate model from the literature. After that, the model is extended to a field scale of typical deep underground mines to study freeze-pipe eccentricity. The results show that an eccentric freeze pipe can reduce the phase-front expansion by around 25%, as compared with a concentric one. Also, the geometrical profile of the phase-front is significantly influenced by the freeze-pipe eccentricity. Furthermore, in the passive zone, where AGF coolants are isolated from the ground to reduce energy consumption, freeze pipe eccentricity can increase the coolant heat gain by 10%. This percentage can increase up to 200% if radiation heat transfer is minimized.


2021 ◽  
Vol 12 (2) ◽  
pp. 86
Author(s):  
Morgan Morgan Obong ◽  
Christian Amadi ◽  
Okon Emmanuel Ekpenyong ◽  
Emu Winifred Harry ◽  
Hope Ukam Edodi

The purpose of the study is to investigate the influence of health and safety training, safety monitoring, and enforcement of compliance on employee efficiency in manufacturing firms. The research employed the quantitative approach involving a descriptive survey. A sample size of 360 respondents was randomly selected for the study. A questionnaire instrument was used in gathering primary data for the study. Confirmatory Factor Analysis (CFA) was used in providing a comprehensive validation of the measurement instrument. The required inferential statistics including normality, multicollinearity, and heteroscedasticity tests were performed and were satisfactory. Structural Equation Model (SEM) was used to estimate structural relationships between health and safety training, safety monitoring and enforcement of compliance on employee efficiency. The research results showed that health and safety training has a significant positive effect on employee efficiency with a p-value of 0.000; safety monitoring has a significant positive effect on employee efficiency with a p-value of 0.000 and enforcement of compliance has a significant positive effect on employee efficiency with a p-value of 0.000. The research brings to the fore and creates awareness on the influence of health and safety training, safety monitoring, and enforcement of compliance to safety and health standard towards enhancing workers' safety, health and welfare for improved employee efficiency. Manufacturing firms should ensure adequate health and safety training and proper safety monitoring and enforcement of compliance to safety and health standard to reduce accidents and improve employee efficiency and performance.


Author(s):  
Prof. A. H. Ansari ◽  
Karishma Shaikh ◽  
Pooja Kadu ◽  
Nikam Rishikesh

Safety is the most vital part of any type of industry. In the mining industry safety and security is a fundamental aspect of all. To avoid any types of accidents mining industry follows some basic precautions. Still accidents take place in underground mines due to rise in temperature, increased water level, and methane gas leakage. Here we provide safety to worker. When worker in danger he can press panic switch inform security. To enhance safety in underground mines, a reliable communication system must be established between workers in underground mines and fixed ground mine system. The communication network must not be interrupted at any moment and at any condition. A cost effective zigbee based wireless mine supervising system with early-warning intelligence is proposed in this project. Worker status can be monitor over IOT.


Author(s):  
Hans Tammemagi

Most of the solid waste generated by society ultimately winds up in near-surface landfills. Let us put our thinking caps firmly on, place our prejudices aside, and explore what other methods might be used to dispose of waste. We should seek, in particular, the approaches that best fulfill the three basic principles described in chapter 2. That is, we should strive to find disposal methods that are in accord with sustainable development. Existing and abandoned pits, quarries, and mines are attractive for waste disposal because a hole to contain the wastes has already been excavated. Such abandoned areas, when left unreclaimed, cannot be used for agriculture or other beneficial uses. Thus, they generally do not have significant market value and can often be obtained relatively cheaply. For these reasons, pits and quarries have been extensively used for landfills. Operating and abandoned mines, on which this section focuses, are somewhat similar to pits and quarries, though usually larger. Abandoned mines hold promise as disposal facilities because they are resource areas that have been depleted and thus have little future value. There are two basic types of mine: the open pit mine, which is effectively a large pit or hole in the ground; and the underground mine, where the mined-out openings are deep underground and there is no surface expression except for the shafts used to gain subsurface access. Because underground mines occupy minimal surface land, their use for waste disposal would be in accordance with the sustainable development principles that were advocated in chapter 2. Several European countries, with higher population densities and much smaller land mass than in North America, have long used abandoned underground mines to dispose of their rubbish. The major advantage of placing wastes deep in underground mines is that it is inherently safer than placing the wastes in a surface facility. The amount of groundwater and its flow rate decrease with depth; this fact, combined with the long transport paths back to the biosphere, minimizes the possibility that contaminants will be carried by groundwater to the surface, where they could damage the environment. The waste is contained deeper and more securely.


Computers ◽  
2019 ◽  
Vol 8 (4) ◽  
pp. 82 ◽  
Author(s):  
Jabbar Al-Dulaimi ◽  
John Cosmas ◽  
Maysam Abbod

This paper presents a design and prototype of an IoT-based health and safety monitoring system using MATLAB GUI. This system, which is called the Smart Health and Safety Monitoring System, is aimed at reducing the time, cost and manpower requirements of distributed workplaces. The proposed system is a real-time control and monitoring system that can access on-line the status of consumable devices in the workplace via the internet and prioritise the critically high location that need replenishing. The system dynamically updates the status of all location, such as first aid boxes, earplug dispensers and fire extinguishers. Simulation results of the proposed system gives shorter path, time and cost in comparison to manual maintenance systems.


2019 ◽  
Vol 177 (2) ◽  
pp. 763-785
Author(s):  
Emilia Nordström ◽  
Savka Dineva ◽  
Erling Nordlund

Abstract Back analysis for evaluation of the merits of the short-term seismic hazard indicators (precursors) used in the mines and their potential application for early warning was carried out for fourteen seismic events that potentially caused damage in Kiirunavaara Mine, Sweden, selected according to our designed criteria. Five short-term hazard indicators: Seismic Activity Rate (SAR), Cumulative Seismic Moment (CSM), Energy Index (EI), Cumulative Apparent Volume (CAV) and Seismic Apparent Stress Frequency (ASF) were tested. The behaviour of the indicators was studied using the parameters of all seismic events within a sphere around the hypocenter location of the analyzed seismic source within one month before the main (damaging) event. The size of the sphere equals the estimated radius of the analyzed seismic source (area of inelastic deformation). mXrap software (Australian Centre for Geomechanics) was used for data visualization, manipulation, analysis and extraction. The results from the main analysis showed a good agreement between the expected and actual behaviour of the SAR, CSM and CAV indicators. In overall, CSM and CAV ranked the highest positive/expected behaviour followed by SAR (Table 3). The EI and ASF ranked lowest and showed to be sensitive to the number of events within the source sphere. The rate of false warnings and missed warnings was also investigated for the 25 days-long period before the damaging events. A similar trend was observed as for the main analysed event. The results from this study can be used for further improvement of the short-term hazard estimations and early warning system in deep underground mines.


2013 ◽  
Vol 416-417 ◽  
pp. 99-103
Author(s):  
Li Ren Huang ◽  
Ji Wei Dong ◽  
Qin Fen Lu ◽  
Yun Yue Ye ◽  
Yi Chen

The ropeless elevator driven by linear motor is expected to be a new solution to vertical transportation of skyscrapers and the deep underground mines. Due to high thrust force density, low force ripple and low cost etc., a double-sided permanent magnet linear synchronous motor (DPMLSM) with slotted iron core and multi-segment primary is proposed and designed. Based on the erected 2D finite element model, the structure is optimized in order to reduce the detent force. Moreover, the influence of manufacture error on force performance is also investigated. It is shown the proposed DPMLSM is suitable for the ropeless elevator.


Sign in / Sign up

Export Citation Format

Share Document