scholarly journals Analysis of Chatter and Turning Errors of Basalt Fiber Reinforced Polymer Concrete Lathe

2021 ◽  
Vol 1748 ◽  
pp. 062058
Author(s):  
Ping Xu ◽  
Wenli Li ◽  
Yinghua Yu ◽  
Jiaxing Shen
2020 ◽  
Vol 23 (15) ◽  
pp. 3323-3334
Author(s):  
Buntheng Chhorn ◽  
WooYoung Jung

The bonding performance of basalt fiber-reinforced polymer and concrete substrate has a significant effect on the reliability of externally strengthened existing concrete structure, due to being the most vulnerable element to failure in this fiber-reinforced polymer–concrete strengthening system. Its failure can result in the failure of the whole structure. Although many previous researchers have been interested in the tensile bonding strength of carbon fiber-reinforced polymer and glass fiber-reinforced polymer–concrete interface, that of basalt fiber-reinforced polymer–concrete interface has been very limited. Thus, the objective of this study is to experimentally assess the tensile bonding strength of the basalt fiber-reinforced polymer–concrete interface. The effects of high temperature, freezing–thawing cycles, type of resin, and concrete crack widths on the tensile bonding strength are also investigated. The pull-off experiment is conducted according to ASTM D7522/D7522M-15. A total of 205 core specimens of 50 mm diameter and 10 mm depth were taken from 41 concrete beams. The experimental results illustrate that both freezing–thawing and high-temperature condition have a substantial effect on the bonding strength of the basalt fiber-reinforced polymer–concrete interface. Bonding strength was decreased within the range of about 9%–30% when the number of freezing–thawing cycles increases from 100 to 300; likewise, it was decreased up to 30% when the exposure temperature rises to 200°C. Also, the specimens which were repaired to close their cracks by epoxy resin had no significant effect on the bonding strength of basalt fiber-reinforced polymer–concrete interface, when the specimens had crack width of less than 1.5 mm.


2018 ◽  
Vol 765 ◽  
pp. 355-360 ◽  
Author(s):  
Sakol Suon ◽  
Shahzad Saleem ◽  
Amorn Pimanmas

This paper presents an experimental study on the compressive behavior of circular concrete columns confined by a new class of composite materials originated from basalt rock, Basalt Fiber Reinforced Polymer (BFRP). The primary objective of this study is to observe the compressive behavior of BFRP-confined cylindrical concrete column specimens under the effect of different number of layers of basalt fiber as a study parameter (3, 6, and 9 layers). For this purpose, 8 small scale circular concrete specimens with no internal steel reinforcement were tested under monotonic axial compression to failure. The results of BFRP-confined concrete specimens of this study showed a bilinear stress-strain response with two ascending branches. Consequently, the performance of confined columns was improved as the number of BFRP layer was increased, in which all the specimens exhibited ductile behavior before failure with significant strength enhancement. The experimental results indicate the well-performing of basalt fiber in improving the concrete compression behavior with an increase in number of FRP layers.


2016 ◽  
Vol 51 (9) ◽  
pp. 1275-1284 ◽  
Author(s):  
Jianzhe Shi ◽  
Xin Wang ◽  
Huang Huang ◽  
Zhishen Wu

Relaxation is a key factor that controls the application of prestressing fiber-reinforced polymer tendons. This paper focuses on the evaluation of the relaxation behavior of newly developed basalt fiber-reinforced polymer tendons through an approach considering anchorage slippage. A series of relaxation tests on basalt fiber-reinforced polymer tendons subjected to three levels of initial stresses (0.4 fu, 0.5 fu, and 0.6 fu, where fu = ultimate strength) were conducted using a specially designed test setup that eliminates the impact of slippage at the anchor zone. An additional group of tests was conducted to validate the enhancement effect of pretension on the relaxation behavior. The relaxation rates at one million hours were predicted based on experimental fitting. Finally, the relaxation rates at 1000 h were predicted using the correlation between the relaxation and creep and were validated with the experimental relaxation rates. The results demonstrate the effectiveness of the proposed setup in measuring the relaxation loss of specimens and reveal that the relaxation rates of untreated basalt fiber-reinforced polymer tendons at 1000 h are 4.2%, 5.3%, and 6.4% at 0.4 fu, 0.5 fu, and 0.6 fu, respectively. Pretension treatment performs effective in relaxation loss controlling. BFRP tendons are recommended to be applied at an initial stress of 0.5 fu after pretension treatment, with one-million-hour relaxation rate equal to 6.7%. Furthermore, the relaxation rate at 1000 h can be predicted accurately based on the creep behavior. The conclusions of this study can provide guidance for the prestressing applications of basalt fiber-reinforced polymer tendons.


Basalt fibre reinforced polymer composite is a newly versatile material that has good potential to be used in many applications due to its high specific modulus and strength properties. This paper is aimed to evaluate the response and properties of BFRP composite when it is subjected to low-velocity impact loading. The BFRP laminates were fabricated using vacuum bagging method. The effects of 5, 10 and 15wt% nanosilica particles on density, impact load and energy absorbed were investigated using a drop weight impact test. The damage characteristics of the samples were examined using an optical microscope. The addition of 15wt% nanosilica into Basalt fiber reinforced polymer composite significantly improved the energy absorption properties of the specimens. This suggests that the nanomodified BFRP composite has better damage resistance properties when compared to the pure system.


Sign in / Sign up

Export Citation Format

Share Document