scholarly journals Magnetohydrodynamics fluid flow passing through a sliced magnetic sphere influenced by mixed convection

2021 ◽  
Vol 1836 (1) ◽  
pp. 012042
Author(s):  
B Widodo
2013 ◽  
Vol 8-9 ◽  
pp. 225-234
Author(s):  
Dalia Sabina Cimpean

The present study is focused on the mixed convection fluid flow through a porous medium, when a different amount of nanoparticles is added in the base fluid. The nanofluid saturates the porous matrix and different situations of the flow between two walls are presented and discussed. Alternatively mathematical models are presented and discussed. A solution of a system which contains the momentum, Darcy and energy equations, together with the boundary conditions involved, is given. The behavior of different nanofluids, such thatAu-water, Ag-waterandFe-wateris graphically illustrated and compared with the previous results.The research target is to observe the substantial increase of the thermophysical fluid properties, when the porous medium issaturated by a nanofluid instead of a classical Newtonian fluid.


2020 ◽  
Vol 16 (4) ◽  
pp. 487-492
Author(s):  
Nurazleen Abdul Majid ◽  
Nurul Farahain Mohammad ◽  
Abdul Rahman Mohd Kasim ◽  
Sharidan Shafie

In recent decades, micropolar fluid has been one of the major interesting research subjects due to the numerous applications such as blood, paint, body fluid, polymers, colloidal fluid and suspension fluid. However, the behavior of micropolar fluid flow over a permeable stretching surface of another quiescent fluid with a heavier density of micropolar fluid under the condition of mixed convection is still unknown. Thus, the current work aims to investigate numerically the mixed convection of micropolar fluid flow over a permeable stretching surface of another quiescent fluid. In this research, the similarity transformation is implemented to reduce the boundary layer governing equations from partial differential equations to a system of nonlinear ordinary differential equations. Then, this model is solved numerically using shooting technique with Runge-Kutta-Gill method and applied in Jupyter Notebook using Python 3 language. The behavior of micropolar fluid in terms of velocity, skin friction, microrotation and temperature are analyzed.


2021 ◽  
Vol 409 ◽  
pp. 95-109
Author(s):  
Ephesus Olusoji Fatunmbi ◽  
Samuel Segun Okoya

An analysis of nonlinear mixed convection transport of hydromagnetic Casson nanofluid over a nonlinear stretching sheet near a stagnation point is deliberated in this study. The flow is confined in a porous device in the presence of thermophoresis, Ohmic heating, non-uniform heat source with temperature-dependent thermal conductivity associated with haphazard motion of tiny particles. The transport equations are translated from nonlinear partial differential equations into ordinary ones via similarity transformation technique and subsequently tackled with shooting method coupled with Runge-Kutta Fehlberg algorithm. The significant contributions of the embedded parameters on the dimensionless quantities are graphically depicted and deliberated while the numerical results strongly agree with related published studies in the limiting conditions. It is found that a rise in the magnitude of Casson fluid parameter decelerates the fluid flow while enhancing the viscous drag and thermal profiles. The inclusion of the nonlinear convection term aids fluid flow whereas heat transfer reduces with growth in the thermophoresis and Brownian motion terms.


2018 ◽  
Vol 389 ◽  
pp. 164-175
Author(s):  
Houssem Laidoudi ◽  
Bilal Blissag ◽  
Mohamed Bouzit

In this paper, the numerical simulations of laminar mixed convection heat transfer from row of three isothermal square cylinders placed in side-by-side arrangement are carried out to understand the behavior of fluid flow around those cylinders under gradual effect of thermal buoyancy and its effect on the evacuation of heat energy. The numerical results are presented and discussed for the range of these conditions: Re = 10 to 40, Ri = 0 to 2 at fixed value of Prandtl number of Pr = 1 and at fixed geometrical configuration. In order to analyze the effect of thermal buoyancy on fluid flow and heat transfer characteristics the main results are illustrated in terms of streamline and isotherm contours. The total drag coefficient as well as average Nusselt number of each cylinder are also computed to determine exactly the effect of buoyancy strength on hydrodynamic force and heat transfer evacuation of each cylinder.


Sign in / Sign up

Export Citation Format

Share Document