scholarly journals Rapid gas temperature measurement device for gas turbine engines with detection of pre-surge phenomena

2021 ◽  
Vol 1891 (1) ◽  
pp. 012048
Author(s):  
A V Artyukhov ◽  
V I Babkin ◽  
Z A Sukhinets ◽  
A I Gulin
Author(s):  
Hejie Li ◽  
Guanghua Wang ◽  
Nirm Nirmalan ◽  
Samhita Dasgupta ◽  
Edward R. Furlong

A novel technique is developed to simultaneously measure hot surface and gas temperatures based on passive absorption/emission spectroscopy (PAS). This non-intrusive, in situ technique is the extension of multi-wavelength pyrometry to also measure gas temperature. The PAS technique uses hot surface (e.g., turbine blade) as the radiation source, and measures radiation signals at multiple wavelengths. Radiation signals at wavelengths with minimum interference from gas (mostly from water vapor and CO2) can be used to determine the hot surface temperature, while signals at wavelengths with gas absorption/emission can be used to determine the gas temperature in the line-of-sight. The detection wavelengths are optimized for accuracy and sensitivity for gas temperature measurements. Simulation results also show the effect of non-uniform gas temperature profile on measurement results. High pressure/temperature tests are conducted in single nozzle combustor rig to demonstrate sensor proof-of-concept. Preliminary engine measurement results shows the potential of this measurement technique. The PAS technique only requires one optical port, e.g., existing pyrometer or borescope port, to collect the emission signal, and thus provide practical solution for gas temperature measurement in gas turbine engines.


Author(s):  
Paolo Chiesa ◽  
Stefano Consonni ◽  
Giovanni Lozza ◽  
Ennio Macchi

It is well known that the history of gas turbine engines has been characterized by a very clear trend toward higher and higher operating temperatures, a growth which in the past 40 years has progressed at the impressive pace of approximately 13°C/year. Expected improvements in blade cooling techniques and advancements in materials indicate that this tendency is going to last for long time, leading to firing temperatures of over 1500°C within the next two decades. This paper investigates the impact of such temperature increase on optimal cycle arrangements and on ultimate performance improvements achievable by future advanced gas/steam cycles for large-scale power generation. Performance predictions have been carried out by a modified, improved version of a computer code originally devised and calibrated for “1990 state-of-the-art” gas/steam cycles. The range of performances to be expected in the next decades has been delimited by considering various scenarios of cooling technology and materials, including the extreme situations of adiabatic expansion and stoichiometric combustion. The results of parametric thermodynamic analyses of several cycle configurations are presented for a number of technological scenarios, including cycles with intercooling and reheat. A specific section discusses how the optimum configuration of the bottoming steam cycle changes to keep up with exhaust gas temperature increases. Calculations show that, under plausible assumptions on future technology advancements, within two decades the proper selection of plant configuration and operating parameters can yield net efficiencies of over 60%.


2011 ◽  
Vol 18 (3) ◽  
pp. 37-42 ◽  
Author(s):  
Zbigniew Korczewski

Exhaust gas temperature measurements in diagnostic examination of naval gas turbine engines: Part II Unsteady processes The second part of the article presents the results of operating diagnostic tests of a two- and three-shaft engine with a separate power turbine during the start-up and acceleration of the rotor units. Attention was paid to key importance of the correctness of operation of the automatic engine load control system, the input for which, among other signals, is the rate of increase of the exhaust gas flow temperature. The article presents sample damages of the engine flow section which resulted from disturbed functioning of this system. The unsteady operation of the compressor during engine acceleration was the source of excessive increase of the exhaust gas temperature behind the combustion chamber and partial burning of the turbine blade tips.


2011 ◽  
Vol 18 (4) ◽  
pp. 49-53 ◽  
Author(s):  
Zbigniew Korczewski

Exhaust gas temperature measurements in diagnostic examination of naval gas turbine engines The third part of the article presents a method for detecting failures of the automatic engine control system with the aid of an exhaust gas temperature setter, specially designed and machined for this purpose. It also presents a procedure of identifying the operating tolerances and determining the diagnostic tolerances for the exhaust gas temperature recorded in the naval turbine engine during the start-up and acceleration processes. The diagnostic tolerances were determined using the statistic inference, based on the hypothesis about the normal distribution of the starting exhaust gas temperature dispersion at the initial time of engine operation. The above hypothesis was verified using the non-parametric statistic test χ2 for examining the consistency of the empirical distribution with the assumed normal distribution. As a result of the examination, satisfactory convergence of the compared distributions was obtained which made the basis for assuming the three-sigma limits of the diagnostic tolerance for the analysed engine control parameter.


Author(s):  
V.D. Molyakov ◽  
B.A. Kunikeev

At present, in the promising development of gas turbine engines compared to at least the fourth generation products, there have been significant changes in the approaches to the design of engine. First of all, it is an increase in maximum values of temperature, gas pressure and circumferential flow speeds, an increase in power of the turbine stage, as well as improvement of the turbine manufacturing technology. All these factors lead to the fact that when designing the flow parts of the gas turbine, it is necessary at the fixed design flow rate of the working medium in the engine, i.e. at the fixed diameters, lengths of the nozzle and rotor blades forming the outline of the inter-blade channels, to increase the blade chords with the corresponding reduction of the number of blades in the row. The increase in turbine stage power associated with the increase in temperature, pressure (density), and circumferential velocity increases the bending stresses leading to the need to increase chords at a fixed blade length. Significant reduction of number of blades in stages, simplifies technology of blades manufacturing. A substantial increase in the maximum gas temperature, in the perspective of more than 2000 K, also leads to the need to increase the blade chords, due to the need to place cooling cavities in the blades. As a result, contradictions arise with the use of similarity theory in the design of stages of turbines of different purpose, as some of the main requirements of similarity are violated — geometric similarity of blade channels of the flow part and then the use of the generally accepted number Re by the chord of blades loses meaning. Therefore, it is necessary to carry out detailed investigations of all flow parameters in four stages of turbines with detection of influence of change of rotor blade chords at equal length of blades. And justify the effect of change of rotor blade chords on physical processes in flow parts of turbines in engines of various purpose.


Author(s):  
J. I. Black

This paper is intended to introduce the reader to the subject of turbine temperature controls, and to present the results of a preliminary engine evaluation of two miniature fluidic oscillator temperature sensors. These units were installed in the air-cooled vanes of the first turbine nozzle on a Lycoming T55 L7 Engine and have successfully measured the gas temperature at the turbine inlet station for more than 8 hr. In addition to the test results, topics relating to the subject of turbine temperature controls, such as signal error compensation and temperature averaging, will be briefly discussed.


Author(s):  
Upul DeSilva ◽  
Richard H. Bunce ◽  
Joshua M. Schmitt ◽  
Heiko Claussen

Siemens has developed a novel approach for measuring the process gas temperature leaving the power turbine in their heavy industrial gas turbine engines using active acoustic tomography. Siemens has deployed this measurement technique on two test engines of different power ranges and different combustion and exhaust duct configurations. These engine tests have demonstrated that this technology is effective and robust. All working parts are outside the heat effective zone so, unlike the traditional intrusive point temperature measurement method, sensors are easily replaceable during engine operation. Bulk exhaust temperature is used in performance testing of industrial gas turbine engines and is a critical measurement for power production. Temperature distribution information in the exhaust plane is valuable for safe engine operation and can be used to prevent lifetime reduction due to hotspots or to monitor the burner flames. Siemens used broadband sound sources for the previously reported acoustic pyrometer experiments. This paper extends this work utilizing sparse time-frequency encoded sources to improve the robustness of time of flight estimation in the high noise area of the turbine exhaust. The goal is to achieve a higher signal to noise ratio between the emitted and received signals by focusing the acoustic energy into narrow time-frequency bins that are little affected by turbine noise. Different acoustic patterns are tested and compared to the previously used broadband source both in laboratory experiments and a turbine test bed. The patterns are evaluated regarding their noise robustness, sound pressure levels and narrow autocorrelation which are important for accurate time of flight estimation in high noise environments.


Sign in / Sign up

Export Citation Format

Share Document