scholarly journals Exhaust gas temperature measurements in diagnostic examination of naval gas turbine engines

2011 ◽  
Vol 18 (4) ◽  
pp. 49-53 ◽  
Author(s):  
Zbigniew Korczewski

Exhaust gas temperature measurements in diagnostic examination of naval gas turbine engines The third part of the article presents a method for detecting failures of the automatic engine control system with the aid of an exhaust gas temperature setter, specially designed and machined for this purpose. It also presents a procedure of identifying the operating tolerances and determining the diagnostic tolerances for the exhaust gas temperature recorded in the naval turbine engine during the start-up and acceleration processes. The diagnostic tolerances were determined using the statistic inference, based on the hypothesis about the normal distribution of the starting exhaust gas temperature dispersion at the initial time of engine operation. The above hypothesis was verified using the non-parametric statistic test χ2 for examining the consistency of the empirical distribution with the assumed normal distribution. As a result of the examination, satisfactory convergence of the compared distributions was obtained which made the basis for assuming the three-sigma limits of the diagnostic tolerance for the analysed engine control parameter.

2011 ◽  
Vol 18 (3) ◽  
pp. 37-42 ◽  
Author(s):  
Zbigniew Korczewski

Exhaust gas temperature measurements in diagnostic examination of naval gas turbine engines: Part II Unsteady processes The second part of the article presents the results of operating diagnostic tests of a two- and three-shaft engine with a separate power turbine during the start-up and acceleration of the rotor units. Attention was paid to key importance of the correctness of operation of the automatic engine load control system, the input for which, among other signals, is the rate of increase of the exhaust gas flow temperature. The article presents sample damages of the engine flow section which resulted from disturbed functioning of this system. The unsteady operation of the compressor during engine acceleration was the source of excessive increase of the exhaust gas temperature behind the combustion chamber and partial burning of the turbine blade tips.


Author(s):  
Hejie Li ◽  
Guanghua Wang ◽  
Nirm Nirmalan ◽  
Samhita Dasgupta ◽  
Edward R. Furlong

A novel technique is developed to simultaneously measure hot surface and gas temperatures based on passive absorption/emission spectroscopy (PAS). This non-intrusive, in situ technique is the extension of multi-wavelength pyrometry to also measure gas temperature. The PAS technique uses hot surface (e.g., turbine blade) as the radiation source, and measures radiation signals at multiple wavelengths. Radiation signals at wavelengths with minimum interference from gas (mostly from water vapor and CO2) can be used to determine the hot surface temperature, while signals at wavelengths with gas absorption/emission can be used to determine the gas temperature in the line-of-sight. The detection wavelengths are optimized for accuracy and sensitivity for gas temperature measurements. Simulation results also show the effect of non-uniform gas temperature profile on measurement results. High pressure/temperature tests are conducted in single nozzle combustor rig to demonstrate sensor proof-of-concept. Preliminary engine measurement results shows the potential of this measurement technique. The PAS technique only requires one optical port, e.g., existing pyrometer or borescope port, to collect the emission signal, and thus provide practical solution for gas temperature measurement in gas turbine engines.


Author(s):  
D. P. Gardiner ◽  
G. Pucher ◽  
W. D. Allan ◽  
M. LaViolette

This paper describes an experimental study to examine the potential of using Exhaust Gas Temperature (EGT) thermocouples for prompt flame-out detection in gas turbine engines. The approach taken involved accelerating the response of a shielded, slow response thermocouple using electronic processing of the signal. Thus, the abrupt drop in temperature characteristic of a flame-out could be detected within a much shorter time period than would be possible through a conventional thermocouple temperature measurement method. This was intended to provide a robust alternative to existing optical flame-out sensors which have fast response but can be susceptible to false flame-out indications due to window sooting. A production EGT thermocouple with online electronic processing was compared with a production optical flame sensor from a GE F-404 and a laboratory photodiode sensing system. The devices were tested in a full scale GE J-85 combustion chamber sector rig with optical access. The results showed that the thermocouple flame sensor had a response time to flame-outs of less than 100 ms. This was much faster than a conventional thermocouple, but still an order of magnitude longer than the optical flame sensor. However, whereas the optical flame sensor could yield ambiguous results about the presence of flame under some conditions, the thermocouple flame sensor provided a clear indication of flame-out events for all the conditions that were tested.


2015 ◽  
Vol 22 (1) ◽  
pp. 47-54 ◽  
Author(s):  
Zbigniew Korczewski

Abstract The article discusses the problem of diagnostic informativeness of exhaust gas temperature measurements in turbocharged marine internal combustion engines. Theoretical principles of the process of exhaust gas flow in turbocharger inlet channels are analysed in its dynamic and energetic aspects. Diagnostic parameters are defined which enable to formulate general evaluation of technical condition of the engine based on standard online measurements of the exhaust gas temperature. A proposal is made to extend the parametric methods of diagnosing workspaces in turbocharged marine engines by analysing time-histories of enthalpy changes of the exhaust gas flowing to the turbocompressor turbine. Such a time-history can be worked out based on dynamic measurements of the exhaust gas temperature, performed using a specially designed sheathed thermocouple. The first part of the article discusses possibilities to perform diagnostic inference about technical condition of a marine engine with pulse turbocharging system based on standard measurements of exhaust gas temperature in characteristic control cross-sections of its thermal and flow system. Selected metrological issues of online exhaust gas temperature measurements in those engines are discusses in detail, with special attention being focused on the observed disturbances and thermodynamic interpretation of the recorded measuring signal. Diagnostic informativeness of the exhaust gas temperature measurements performed in steady-state conditions of engine operation is analysed in the context of possible evaluations of technical condition of the engine workspaces, the injection system, and the fuel delivery process.


Energies ◽  
2020 ◽  
Vol 13 (22) ◽  
pp. 5950
Author(s):  
Jinfu Liu ◽  
Mingliang Bai ◽  
Zhenhua Long ◽  
Jiao Liu ◽  
Yujia Ma ◽  
...  

Failures of the gas turbine hot components often cause catastrophic consequences. Early fault detection can detect the sign of fault occurrence at an early stage, improve availability and prevent serious incidents of the plant. Monitoring the variation of exhaust gas temperature (EGT) is an effective early fault detection method. Thus, a new gas turbine hot components early fault detection method is developed in this paper. By introducing a priori knowledge and quantum particle swarm optimization (QPSO), the exhaust gas temperature profile continuous distribution model is established with finite EGT measuring data. The method eliminates influences of operating and ambient condition changes and especially the gas swirl effect. The experiment reveals the presented method has higher fault detection sensitivity.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Zhi-tao Wang ◽  
Ning-bo Zhao ◽  
Wei-ying Wang ◽  
Rui Tang ◽  
Shu-ying Li

As an important gas path performance parameter of gas turbine, exhaust gas temperature (EGT) can represent the thermal health condition of gas turbine. In order to monitor and diagnose the EGT effectively, a fusion approach based on fuzzy C-means (FCM) clustering algorithm and support vector machine (SVM) classification model is proposed in this paper. Considering the distribution characteristics of gas turbine EGT, FCM clustering algorithm is used to realize clustering analysis and obtain the state pattern, on the basis of which the preclassification of EGT is completed. Then, SVM multiclassification model is designed to carry out the state pattern recognition and fault diagnosis. As an example, the historical monitoring data of EGT from an industrial gas turbine is analyzed and used to verify the performance of the fusion fault diagnosis approach presented in this paper. The results show that this approach can make full use of the unsupervised feature extraction ability of FCM clustering algorithm and the sample classification generalization properties of SVM multiclassification model, which offers an effective way to realize the online condition recognition and fault diagnosis of gas turbine EGT.


Author(s):  
Giancarlo Chiatti ◽  
Ornella Chiavola

A comparative series of experimental tests has been performed on a 4-stroke multi cylinder indirect injection diesel engine fueled with diesel oil, pure gas-turbine fuel and gas-turbine fuel with additives. The engine has been equipped aimed at monitoring both the overall performances and the variation with time of the pressure in the pre-combustion chamber. Some key parameters have been investigated at different engine speeds and loads (ignition delay, pressure rise in the pre-combustion chamber, power output, specific fuel consumption, exhaust gas temperature) and discussed results are presented.


Sign in / Sign up

Export Citation Format

Share Document