scholarly journals Numerical analysis of ultimate load and crack propagation in a concrete beam with longitudinal small hole

2021 ◽  
Vol 1973 (1) ◽  
pp. 012222
Author(s):  
Shereen Qasim Abdulridha ◽  
S Z Abeer ◽  
Mohammad S. Nasr ◽  
Adil Abdulameer Waleed
1999 ◽  
Vol 39 (4) ◽  
pp. 256-264 ◽  
Author(s):  
M. Kosai ◽  
A. Shimamoto ◽  
C. T. Yu ◽  
A. S. Kobayashi ◽  
P. W. Tan

2016 ◽  
Vol 707 ◽  
pp. 51-59 ◽  
Author(s):  
Osama Ahmed Mohamed ◽  
Rania Khattab

The behaviour of reinforced concrete beam strengthened with Carbon Fiber Reinforced Polymer (CFRP) and Glass fiber reinforced polymer GFRP laminates was investigated using finite element models and the results are presented in this paper. The numerical investigation assessed the effect of the configuration of FRP strengthening laminates on the behaviour of concrete beams. The load-deflection behaviour, and ultimate load of strengthened beam were compared to those of un-strengthened concrete beams. It was shown that using U-shaped FRP sheets increased the ultimate load. The stiffness of the strengthed beam also increased after first yielding of steel reinforcing bars. At was also observed that strengthening beams with FRP laminates to one-fourth of the beam span, modifies the failure of the beam from shear-controlled near the end of the unstrengthened beam, to flexure-controlled near mid-span. CFRP produced better results compared GFRP in terms of the ability to enhance the behavior of strengthenened reinforced concrete beams.


2017 ◽  
Vol 889 ◽  
pp. 270-274
Author(s):  
Noridah Mohamad ◽  
Wan Inn Goh ◽  
Abdul Aziz Abdul Samad ◽  
A. Lockman ◽  
Anas Alalwani

This paper presents the structural behaviour of reinforced concrete beam embedded with high density polyethylene balls (HDPE) subjected to flexural load. The HDPE balls with 180 mm diameter were embedded to create the spherical voids in the beam which lead to reduction in its self-weight. Two beam specimens with HDPE balls (RC-HDPE) and one solid beam (RC-S) with dimension 250 mm x 300 mm x 1100 mm were cast and tested until failure. The results were analysed in the context of its ultimate load, load-deflection profile, and crack pattern and failure mode. It was found that the ultimate load of RC-HDPE was reduced by 32% compared to RC-S beam while the maximum deflection at its mid span was increased by 4%. However, RC-HDPE is noticed to be more ductile compared to RC-S beam. Both types of beams experienced flexure cracks and diagonal tension cracks before failure.


2014 ◽  
Vol 488-489 ◽  
pp. 750-754 ◽  
Author(s):  
Da Fu Cao ◽  
Kai Fu Zhou ◽  
Min Zhou ◽  
Wen Jie Ge ◽  
Bi Yuan Wang

In order to investigate the shear behaviors of RC beams after freeze-thaw cycles, static shear experiments of 45 RC beams after 0, 75, 100, 125, and 150 freeze-thaw cycles were made. The influences of different numbers of freeze-thaw cycles on the shear behaviors of RC beams with different stirrup spacing were studied. The results show that Freeze-thaw cycle, stirrup spacing of reinforced concrete beam has no significant effect on crack distribution and failure pattern; cracking load and ultimate load of shear beams decrease with the increasing of freeze-thaw cycles.


Sign in / Sign up

Export Citation Format

Share Document