scholarly journals Durability Prediction of FRP composite materials under Hygrothermal Environment

2021 ◽  
Vol 2021 (1) ◽  
pp. 012006
Author(s):  
Benke Shi ◽  
Zhongmin Deng
2010 ◽  
Vol 32 (10) ◽  
pp. 1731-1738 ◽  
Author(s):  
Anastasios P. Vassilopoulos ◽  
Behzad D. Manshadi ◽  
Thomas Keller

Author(s):  
Mostefa Bourchak ◽  
Yousef Dobah ◽  
Abdullah Algarni ◽  
Adnan Khan ◽  
Waleed K. Ahmed

Fiber Reinforced Plastic (FRP) composite materials are widely used in many applications especially in aircraft manufacturing because they offer outstanding strength to weight ratio compared to other materials such as aluminum alloys. The use of hybrid composite materials is potentially an effective cost saving design while maintaining strength and stiffness requirements. In this work, Woven Carbon Fibers (WCFs) along with Unidirectional Glass Fibers (UDGFs) are added to a an aerospace-rated epoxy matrix system to produce a hybrid carbon and glass fibers reinforced plastic composite plates. The manufacturing method used here is a conventional vacuum bagging technique and the stacking sequence achieved consists of a symmetric and balanced laminate (±451WCF, 03UDGF, ±451WCF) to simulate the layup usually adopted for helicopter composite blades constructions. Then, tensile static tests samples are cut according to ASTM standard using a diamond blade and tested using a servohydraulic test machine. Acoustic Emission (AE) piezoelectric sensors (transducers) are attached to the samples surface using a special adhesive. Stress waves that are released at the moments of various failure modes are then recorded by the transducers in the form of AE hits and events (a burst of hits) after they pass through pre-amplifiers. Tests are incrementally paused at load levels that represent significant AE hits activity which usually corresponds to certain failure modes. The unbroken samples are then thoroughly investigated using a high resolution microscopy. The multi load level test-and-inspect method combined with AE and microscopy techniques is considered here to be an innovation in the area of composite failure analysis and damage characterization as it has not been carried out before. Results are found to show good correlation between AE hits concentration zones and the specimens damage location observed by microscopy. Waveform analysis is also carried out to classify the damage type based on the AE signal strength energy, frequency and amplitude. Most of the AE activity is found to initiate from early matrix cracking that develops into delamination. Whereas little fiber failure activity has been observed at the initial stages of the load curve. The results of this work are expected to clear the conflicting reports reported in the literature regarding the correlation of AE hits characteristics (e.g. amplitude level) with damage type in FRP composite materials. In addition, the use of a hybrid design is qualitatively assessed here using AE and microscopy techniques for potential cost savings purposes without jeopardizing the weight and strength requirements as is the case in a typical aircraft composite structural design.


2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
X. H. Zheng ◽  
P. Y. Huang ◽  
X. Y. Guo ◽  
J. L. Huang

As the technique of fiber-reinforced polymer (FRP) composite material strengthened reinforced concrete structures is widely used in the field of civil engineering, durability of the strengthened structures has attracted more attention in recent years. Hygrothermal environment has an adverse effect on the bond behavior of the interface between FRP and concrete. This paper focuses on the bond durability of carbon fiber laminate- (CFL-) concrete interface in hygrothermal condition which simulates the climate characteristic in South China. Twenty 100 mm × 100 mm × 720 mm specimens were divided into 6 groups based on different temperature and humidity. After pretreatment in hygrothermal environment, the specimens were tested using double shear method. Strain gauges bonded along the CFL surface and linear variation displacement transducers (LVDTs) were used to measure longitudinal strains and slip of the interface. Failure mode, ultimate capacity, load-deflection relationship, and relative slip were analyzed. The bond behavior of FRP-concrete interface under hygrothermal environment was studied. Results show that the ultimate bearing capacity of the interface reduced after exposure to hygrothermal environments. The decreasing ranges were up to 27.9% after exposure at high temperature and humidity (60°C, 95% RH). The maximum strains (εmax) of the specimens pretreated decreased obviously which indicated decay of the bond behavior after exposure to the hygrothermal environment.


MRS Bulletin ◽  
2008 ◽  
Vol 33 (8) ◽  
pp. 770-774 ◽  
Author(s):  
Ian P. Bond ◽  
Richard S. Trask ◽  
Hugo R. Williams

AbstractSelf-healing is receiving an increasing amount of interest worldwide as a method to address damage in materials. In particular, for advanced high-performance fiber-reinforced polymer (FRP) composite materials, self-healing offers an alternative to employing conservative damage-tolerant designs and a mechanism for ameliorating inaccessible and invidious internal damage within a structure. This article considers in some detail the various self-healing technologies currently being developed for FRP composite materials. Key constraints for incorporating such a function in FRPs are that it not be detrimental to inherent mechanical properties and that it not impose a severe weight penalty.


2012 ◽  
Vol 490-495 ◽  
pp. 3611-3615 ◽  
Author(s):  
Ping Jin ◽  
De Wang ◽  
Xiao Ming Tan

This paper presents a review of the effects of hygrothermal environment on carbon fiber-reinforced composite materials. A brief summary of the hygrothermal phenomenon and hygrothermal mechanism of CFRP is followed by a detailed review of hygrothermal effects on the performance of the three components of CFRP. In the last, the main problems existing in research process nowadays and its tendency have been proposed.


Author(s):  
Girish Dutt Gautam ◽  
◽  
Sunita Rani ◽  
Sudhanshu Raghuwanshi ◽  
Samendra Singh ◽  
...  

A higher product diversification range with excellent physical, mechanical and chemical properties make Fiber-reinforced polymer (FRP) composite materials a prominent candidate for engineering applications. But, conventional manufacturing techniques always face critical issues during the development of FRP's complex and intrinsic profile. In recent years, Additive Manufacturing (AM) or 3-D printing proves itself a robust technique to produce application-specific parts of FRP composites with a higher degree of customization. In comparison to other 3D printing techniques, Stereolithography (SLA) is able to create mechanically stable objects with higher processing speed. This information paves the way for the present review article. This paper reviews the recent advancement of SLA technique to develop objects of FRP composite materials.


Sign in / Sign up

Export Citation Format

Share Document