scholarly journals An Impedance-Control Based Teleoperation System for Live-Line Maintenance Robot

2021 ◽  
Vol 2025 (1) ◽  
pp. 012080
Author(s):  
Yang Wang ◽  
Hui Wu ◽  
Xiaoming Mai
Author(s):  
A. Monemian Esfahani ◽  
S. M. Rezaei ◽  
M. Zareinejad

Friction forces in the robot joints insert nonlinearity in the dynamic and make errors in tracking. In this paper a new impedance control for the master is proposed to achieve force tracking. In addition, an impedance control for slave combined with sliding mode, which is based on perturbation estimation, is anticipated to reach position tracking. Friction compensators typically include a friction observer that provides a cancellation term in order to be added to the control input. Estimating and compensating the friction and other uncertainties will change the nonlinear equation to a linear one. The stability of entire system under time delay is guaranteed by Llewellyn’s absolute stability criterion. Performance of the proposed controllers is investigated through experiments.


Author(s):  
A. Monemian Esfahani ◽  
S. M. Rezaei ◽  
M. Zareinejad

In this paper a nonlinear disturbance observer (NDO) based impedance control is proposed for a teleoperation system. The unknown friction and uncertainties will be estimated by the observer and added to the control input for compensation. Although friction will improve the stability, it worsens the transparency of the system which is another major point in teleoperation systems. The stability of the system is guaranteed by Lyapunov stability criterion and selecting the best design parameters. Tracking of force/position is achieved by these parameters. Also a fixed time delay is added to the system because of delays in the cables and other sources, it is then compensated with the designed controller. Performance of the proposed control is validated by experimental results.


Author(s):  
Mojtaba Sharifi ◽  
Saeed Behzadipour ◽  
Hassan Salarieh

A bilateral nonlinear adaptive impedance controller is proposed for the control of multi-degrees-of-freedom (DOF) teleoperation systems. In this controller, instead of conventional position and/or force tracking, the impedance of the nonlinear teleoperation system is controlled. The controller provides asymptotic tracking of two impedance models in Cartesian coordinates for the master and slave robots. The proposed bilateral controller can be used in different medical applications, such as telesurgery and telerehabilitation, where the impedance of the robot in interaction with human subject is of great importance. The parameters of the two impedance models can be adjusted according to the application and corresponding objectives and requirements. The dynamic uncertainties are considered in the model of the master and slave robots. The stability and the tracking performance of the system are proved via a Lyapunov analysis. Moreover, the adaptation laws are proposed in the joint space for reducing the computational complexity, however, the controller and the stability proof are all presented in Cartesian coordinates. Using simulations on a 2DOF robot, the effectiveness of the proposed controller is investigated in telesurgery and telerehabilitation operations.


2014 ◽  
Vol 672-674 ◽  
pp. 1770-1773 ◽  
Author(s):  
Fu Cheng Cao ◽  
Li Min Du

Aimed at improving the dynamic response of the lower limb for patients, an impedance control method based on sliding mode was presented to implement an active rehabilitation. Impedance control can achieve a target-reaching training without the help of a therapist and sliding mode control has a robustness to system uncertainty and vary limb strength. Simulations demonstrate the efficacy of the proposed method for lower limb rehabilitation.


Author(s):  
Yali Han ◽  
Jinfei Shi ◽  
Han Sun ◽  
Weijie Zhou ◽  
Hongyao Guan ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document