scholarly journals Antilinear symmetry and the ghost problem in quantum field theory

2021 ◽  
Vol 2038 (1) ◽  
pp. 012018
Author(s):  
Philip D. Mannheim

Abstract The recognition that the eigenvalues of a non-Hermitian Hamiltonian could all be real if the Hamiltonian had an antilinear symmetry such as PT stimulated new insight into the underlying structure of quantum mechanics. Specifically, it led to the realization that Hilbert space could be richer than the established Dirac approach of constructing inner products out of ket vectors and their Hermitian conjugate bra vectors. With antilinear symmetry one must instead build inner products out of ket vectors and their antilinear conjugates, and it is these inner products that would be time independent in the non-Hermitian but antilinearly symmetric case even as the standard Dirac inner products would not be. Moreover, and in a sense quite remarkably, antilinear symmetry could address not only the temporal behavior of the inner product but also the issue of its overall sign, with antilinear symmetry being capable of yielding a positive inner product in situations such as fourth-order derivative quantum field theories where the standard Dirac inner product is found to have ghostlike negative signature. Antilinear symmetry thus solves the ghost problem in such theories by showing that they are being formulated in the wrong Hilbert space, with antilinear symmetry providing a Hilbert space that is ghost free. Antilinear symmetry does not actually get rid of the ghost states. Rather, it shows that the reasoning that led one to think that ghosts were present in the first place is faulty. Implications of our results for constructing unitary quantum theories of gravity are presented.

2020 ◽  
Vol 29 (14) ◽  
pp. 2043009
Author(s):  
Philip D. Mannheim

We review the history of the ghost problem in quantum field theory from the Pauli–Villars regulator theory to currently popular fourth-order derivative quantum gravity theories. While these theories all appear to have unitarity-violating ghost states with negative norm, we show that in fact these ghost states only appear because the theories are being formulated in the wrong Hilbert space. In these theories, the Hamiltonians are not Hermitian but instead possess an antilinear symmetry. Consequently, one cannot use inner products that are built out of states and their Hermitian conjugates. Rather, one must use inner products built out of states and their conjugates with respect to the antilinear symmetry, and these latter inner products are positive. In this way, one can build quantum theories of gravity in four spacetime dimensions that are unitary.


2013 ◽  
Vol 28 (17) ◽  
pp. 1330023 ◽  
Author(s):  
MARCO BENINI ◽  
CLAUDIO DAPPIAGGI ◽  
THOMAS-PAUL HACK

Goal of this paper is to introduce the algebraic approach to quantum field theory on curved backgrounds. Based on a set of axioms, first written down by Haag and Kastler, this method consists of a two-step procedure. In the first one, it is assigned to a physical system a suitable algebra of observables, which is meant to encode all algebraic relations among observables, such as commutation relations. In the second step, one must select an algebraic state in order to recover the standard Hilbert space interpretation of a quantum system. As quantum field theories possess infinitely many degrees of freedom, many unitarily inequivalent Hilbert space representations exist and the power of such approach is the ability to treat them all in a coherent manner. We will discuss in detail the algebraic approach for free fields in order to give the reader all necessary information to deal with the recent literature, which focuses on the applications to specific problems, mostly in cosmology.


1994 ◽  
Vol 09 (01) ◽  
pp. 1-37 ◽  
Author(s):  
YU. P. GONCHAROV

This survey is devoted to possible manifestations of remarkable topological duality between real scalar and spinor fields (TDSS) existing on a great number of manifolds important in physical applications. The given manifestations are demonstrated to occur within the framework of miscellaneous branches in ordinary and supersymmetric quantum field theories, supergravity, Kaluza-Klein type theories, cosmology, strings, membranes and p-branes. All this allows one to draw the condusion that the above duality will seem to be an essential ingredient in many questions of present and future investigations.


Author(s):  
Boris Aliyev

It is shown that the 5D Ricci identities give us a way to create a new viewpoint on the origin of the Maxwell equations, magnetic monopole problem, and also on some problems of the Astrophysics and Cosmology. Specifically, the application of the identities together with the monad and dyad methods makes it possible to introduce the new concept of the rest mass of the elementary particles. The latter leads to the new connections between the General Relativity and quantum field theories, as well as to a better understanding of the magnetic monopole problem and the origins of the Maxwell equations. The obtained results also provide a new insight into the mechanism of the accelerated expansion of the 4D Universe.


2021 ◽  
Vol 2021 (11) ◽  
Author(s):  
Diego Delmastro ◽  
Davide Gaiotto ◽  
Jaume Gomis

Abstract We show that certain global anomalies can be detected in an elementary fashion by analyzing the way the symmetry algebra is realized on the torus Hilbert space of the anomalous theory. Distinct anomalous behaviours imprinted in the Hilbert space are identified with the distinct cohomology “layers” that appear in the classification of anomalies in terms of cobordism groups. We illustrate the manifestation of the layers in the Hilbert for a variety of anomalous symmetries and spacetime dimensions, including time-reversal symmetry, and both in systems of fermions and in anomalous topological quantum field theories (TQFTs) in 2 + 1d. We argue that anomalies can imply an exact bose-fermi degeneracy in the Hilbert space, thus revealing a supersymmetric spectrum of states; we provide a sharp characterization of when this phenomenon occurs and give nontrivial examples in various dimensions, including in strongly coupled QFTs. Unraveling the anomalies of TQFTs leads us to develop the construction of the Hilbert spaces, the action of operators and the modular data in spin TQFTs, material that can be read on its own.


Author(s):  
Boris Aliyev

It is shown that the 5D geodetic equations and 5D Ricci identities give us a way to create a new viewpoint on some problems of Modern Physics, Astrophysics, and Cosmology. Specifically, the application of the 5D geodetic equations in (4+1) and (3+1+1) splintered forms obtained with the help of the monad and dyad methods made it possible to introduce a new, effective generalized concept of the rest mass of the elementary particle. The latter leads one to novel connections between the General Relativity and quantum field theories, as well as all of that, including the (4+1) splitting of the 5D Ricci identities, brings about a better understanding of the magnetic monopole problem and the vital difference in the origins of the Maxwell equations and gives rise to surprising connections between them. The obtained results also provide new insight into the mechanism of the 4D Universe’s expansion and its following acceleration.


Author(s):  
Daniele Colosi ◽  
◽  
Robert Oeckl ◽  
◽  
◽  
...  

We extend the framework of general boundary quantum field theory (GBQFT) to achieve a fully local description of realistic quantum field theories. This requires the quantization of non-Kähler polarizations which occur generically on timelike hypersurfaces in Lorentzian spacetimes as has been shown recently. We achieve this in two ways: On the one hand we replace Hilbert space states by observables localized on hypersurfaces, in the spirit of algebraic quantum field theory. On the other hand we apply the GNS construction to twisted star-structures to obtain Hilbert spaces, motivated by the notion of reflection positivity of the Euclidean approach to quantum field theory. As one consequence, the well-known representation of a vacuum state in terms of a sea of particle pairs in the Hilbert space of another vacuum admits a vast generalization to non-Kähler vacua, particularly relevant on timelike hypersurfaces.


Author(s):  
David Krejčiřík ◽  
Vladimir Lotoreichik ◽  
Miloslav Znojil

We propose a unique way to choose a new inner product in a Hilbert space with respect to which an originally non-self-adjoint operator similar to a self-adjoint operator becomes self-adjoint. Our construction is based on minimizing a ‘Hilbert–Schmidt distance’ to the original inner product among the entire class of admissible inner products. We prove that either the minimizer exists and is unique or it does not exist at all. In the former case, we derive a system of Euler–Lagrange equations by which the optimal inner product is determined. A sufficient condition for the existence of the unique minimally anisotropic metric is obtained. The abstract results are supported by examples in which the optimal inner product does not coincide with the most popular choice fixed through a charge-like symmetry.


2019 ◽  
Vol 34 (08) ◽  
pp. 1950037 ◽  
Author(s):  
R. G. G. Amorim ◽  
F. C. Khanna ◽  
A. P. C. Malbouisson ◽  
J. M. C. Malbouisson ◽  
A. E. Santana

The tilde conjugation rule in thermofield dynamics, equivalent to the modular conjugation in a [Formula: see text]-algebra, is used to develop unitary representations of the Poincaré group, where the Hilbert space has the phase space content, a symplectic Hilbert space. The state is described by a quasi-amplitude of probability, which is a sort of wave function in phase space, associated with the Wigner function. The quantum field theory in phase space is then constructed, including the quantization rules for the Klein–Gordon and the Dirac fields, the derivation of the electrodynamics in phase space and elements of a relativistic quantum kinetic theory. Towards a physical interpretation of the theory, propagators are associated with the corresponding Wigner functions. The Feynman rules follow accordingly with vertices similar to those of usual non-Abelian quantum field theories.


Author(s):  
Carl Hoefer

Scientific realists often say that there should be belief in the approximate truth of ‘our best scientific theories.’ It is hard to hear the phrase ‘our best scientific theories’ without thinking of quantum mechanics and quantum field theories. But as numerous chapters in this collection make clear, it is unclear that some experts even know how to make sense of being a realist about quantum theories. They provide recipes for calculating incredibly precise predictions for observations, but beyond the recipes, they do not seem to offer a clear-cut or unambiguous picture of what physical reality is like at the fundamental level. After giving an overview of the problems that beset any attempt to believe in the truth or approximate truth of quantum theories, Chapter 2 turns to the question of how to protect scientific realism from the ills of the quantum. The aim is to show that it is possible to quarantine the worst of those ills, freeing us to adopt a robustly realistic attitude toward many other extremely successful areas of contemporary science, such as (parts of) geology, microbiology, and chemistry. The quarantine barrier may be imperfect and permeable in places, but is strong enough (the chapter argues) to help the cause of scientific realism.


Sign in / Sign up

Export Citation Format

Share Document