scholarly journals Intensive Study of Ceria Microsphere Stabilized with Zirconia by The External Gelatin Method

2021 ◽  
Vol 2048 (1) ◽  
pp. 012016
Author(s):  
Ridwan ◽  
A Insani ◽  
Mujamilah ◽  
A Patriati ◽  
G T Sulungbudi ◽  
...  

Abstract One of the keys to success in the process of fuel synthesis for pebble type high temperature nuclear reactors is mastery in kernel synthesis technology which is the core of the fuel itself. In this paper, the results of a comprehensive study of the preparation of a kernel microsphere from ceria stabilized zirconia (CSZ) using the external gelatin method in BATAN will be discussed. Important parameters obtained from this experiment will be the basis for the actual manufacturing of nuclear fuel kernels. Analysis based on measurement data using the Small Angle Neutron Spectrometer (SANS) provides a deep understanding of the mechanism of CSZ microsphere formation, so that at the end it can provide an understanding of how to avoid possible cracks during heat treatment.

Author(s):  
Alexandre Lecoanet ◽  
Michel Gradeck ◽  
Xiaoyang Gaus-Liu ◽  
Thomas Cron ◽  
Beatrix Fluhrer ◽  
...  

Abstract This paper deals with ablation of a solid by a high temperature liquid jet. This phenomenon is a key issue to maintain the vessel integrity during the course of a nuclear reactor severe accident with melting of the core. Depending on the course of such an accident, high temperature corium jets might impinge and ablate the vessel material leading to its potential failure. Since Fukushima Daiichi accident, new mitigation measures are under study. As a designed safety feature of a future European SFR, bearing the purpose of quickly draining of the corium out of the core and protecting the reactor vessel against the attack of molten melt, the in-core corium is relocated via discharge tubes to an in-vessel core-catcher has been planned. The core-catcher design to withstand corium jet impingement demands the knowledge of very complex phenomena such as the dynamics of cavity formation and associated heat transfers. Even studied in the past, no complete data are available concerning the variation of jet parameters and solid structure materials. For a deep understanding of this phenomenon, new tests have been performed using both simulant and prototypical jet and core catcher materials. Part of these tests have been done at University of Lorraine using hot liquid water impinging on transparent ice block allowing for the visualizations of the cavity formation. Other tests have been performed in Karlsruhe Institute of Technology using liquid steel impinging on steel block.


Author(s):  
O. T. Sotskaya ◽  
◽  
T. I. Mikhalitsyna ◽  
N. E. Savva ◽  
N. A. Goryachev ◽  
...  

The article presents the data from a comprehensive study of the Aksu Mo-porphyry system metasomatites (Korkodon-Nayakhan magmatic activation zone). The halo of metasomatic changes around the porphyry system, associated with the tectonic-block structure of the territory, is shown to be asymmetric. The core of the system is brought to the surface and located in a halo of kalifeldspar- muscovite metasomatites; the northwestern block is elevated and characterized by high-temperature epidote-biotite and epidote-pyroxene propylites, while in the southeastern block there is a consistent transition from kalifeldspar-sericite metasomatites to fragments of argillisite ones. The established zoning is confirmed by geochemical associations and mineralization types from the northwest to the southeast: in the northwest, Au-Bi (As, Cu) at the Solnechnoye ore occurrence; in the center, Mo (Cu, Au) at the Aksu deposit; in the southeast, Ag-Pb-Zn (Cu, Bi, As, Au) at the Vysokoye ore occurrence.


Author(s):  
P.P.K. Smith

Grains of pigeonite, a calcium-poor silicate mineral of the pyroxene group, from the Whin Sill dolerite have been ion-thinned and examined by TEM. The pigeonite is strongly zoned chemically from the composition Wo8En64FS28 in the core to Wo13En34FS53 at the rim. Two phase transformations have occurred during the cooling of this pigeonite:- exsolution of augite, a more calcic pyroxene, and inversion of the pigeonite from the high- temperature C face-centred form to the low-temperature primitive form, with the formation of antiphase boundaries (APB's). Different sequences of these exsolution and inversion reactions, together with different nucleation mechanisms of the augite, have created three distinct microstructures depending on the position in the grain.In the core of the grains small platelets of augite about 0.02μm thick have farmed parallel to the (001) plane (Fig. 1). These are thought to have exsolved by homogeneous nucleation. Subsequently the inversion of the pigeonite has led to the creation of APB's.


Author(s):  
M. Larsen ◽  
R.G. Rowe ◽  
D.W. Skelly

Microlaminate composites consisting of alternating layers of a high temperature intermetallic compound for elevated temperature strength and a ductile refractory metal for toughening may have uses in aircraft engine turbines. Microstructural stability at elevated temperatures is a crucial requirement for these composites. A microlaminate composite consisting of alternating layers of Cr2Nb and Nb(Cr) was produced by vapor phase deposition. The stability of the layers at elevated temperatures was investigated by cross-sectional TEM.The as-deposited composite consists of layers of a Nb(Cr) solid solution with a composition in atomic percent of 91% Nb and 9% Cr. It has a bcc structure with highly elongated grains. Alternating with this Nb(Cr) layer is the Cr2Nb layer. However, this layer has deposited as a fine grain Cr(Nb) solid solution with a metastable bcc structure and a lattice parameter about half way between that of pure Nb and pure Cr. The atomic composition of this layer is 60% Cr and 40% Nb. The interface between the layers in the as-deposited condition appears very flat (figure 1). After a two hour, 1200 °C heat treatment, the metastable Cr(Nb) layer transforms to the Cr2Nb phase with the C15 cubic structure. Grain coarsening occurs in the Nb(Cr) layer and the interface between the layers roughen. The roughening of the interface is a prelude to an instability of the interface at higher heat treatment temperatures with perturbations of the Cr2Nb grains penetrating into the Nb(Cr) layer.


Alloy Digest ◽  
1993 ◽  
Vol 42 (10) ◽  

Abstract ALTEMP HX is an austenitic nickel-base alloy designed for outstanding oxidation and strength at high temperatures. The alloy is solid-solution strengthened. Applications include uses in the aerospace, heat treatment and petrochemical markets. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as fracture toughness and creep. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, and joining. Filing Code: Ni-442. Producer or source: Allegheny Ludlum Corporation.


Alloy Digest ◽  
1992 ◽  
Vol 41 (5) ◽  

Abstract INCO ALLOY 330 is a nickel/iron/chromium austenitic alloy, not hardenable by heat treatment. It is a solid solution strengthened high-temperature alloy. This datasheet provides information on composition, physical properties, elasticity, and tensile properties as well as creep. It also includes information on high temperature performance and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Ni-403. Producer or source: Inco Alloys International Inc..


Alloy Digest ◽  
1974 ◽  
Vol 23 (4) ◽  

Abstract ALUMINUM 3004 is nominally an aluminum-manganese-magnesium alloy which cannot be hardened by heat treatment; however, it can be strain hardened by cold working. It has higher strength than Aluminum 3003 and good workability, weldability and resistance to corrosion. This datasheet provides information on composition, physical properties, hardness, elasticity, tensile properties, and compressive and shear strength as well as fatigue. It also includes information on low and high temperature performance, and corrosion resistance as well as forming, heat treating, machining, and joining. Filing Code: Al-51. Producer or source: Various aluminum companies. Originally published June 1957, revised April 1974.


Sign in / Sign up

Export Citation Format

Share Document