elevated temperature strength
Recently Published Documents


TOTAL DOCUMENTS

104
(FIVE YEARS 16)

H-INDEX

16
(FIVE YEARS 4)

2022 ◽  
Vol 896 ◽  
pp. 163129
Author(s):  
Bojun Zhao ◽  
Guoqing Chen ◽  
Shasha Lv ◽  
Xuesong Fu ◽  
Wenlong Zhou

Materials ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 5489
Author(s):  
Jovid Rakhmonov ◽  
Kun Liu ◽  
Paul Rometsch ◽  
Nick Parson ◽  
X.-Grant Chen

In the present work, we investigated the possibility of introducing fine and densely distributed α-Al(MnFe)Si dispersoids into the microstructure of extruded Al-Mg-Si-Mn AA6082 alloys containing 0.5 and 1 wt % Mn through tailoring the processing route as well as their effects on room- and elevated-temperature strength and creep resistance. The results show that the fine dispersoids formed during low-temperature homogenization experienced less coarsening when subsequently extruded at 350 °C than when subjected to a more typical high-temperature extrusion at 500 °C. After aging, a significant strengthening effect was produced by β″ precipitates in all conditions studied. Fine dispersoids offered complimentary strengthening, further enhancing the room-temperature compressive yield strength by up to 72–77 MPa (≈28%) relative to the alloy with coarse dispersoids. During thermal exposure at 300 °C for 100 h, β″ precipitates transformed into undesirable β-Mg2Si, while thermally stable dispersoids provided the predominant elevated-temperature strengthening effect. Compared to the base case with coarse dispersoids, fine and densely distributed dispersoids with the new processing route more than doubled the yield strength at 300 °C. In addition, finer dispersoids obtained by extrusion at 350 °C improved the yield strength at 300 °C by 17% compared to that at 500 °C. The creep resistance at 300 °C was greatly improved by an order of magnitude from the coarse dispersoid condition to one containing fine and densely distributed dispersoids, highlighting the high efficacy of the new processing route in enhancing the elevated-temperature properties of extruded Al-Mg-Si-Mn alloys.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sheng Yin ◽  
Yunxing Zuo ◽  
Anas Abu-Odeh ◽  
Hui Zheng ◽  
Xiang-Guo Li ◽  
...  

AbstractRefractory high-entropy alloys (RHEAs) are designed for high elevated-temperature strength, with both edge and screw dislocations playing an important role for plastic deformation. However, they can also display a significant energetic driving force for chemical short-range ordering (SRO). Here, we investigate mechanisms underlying the mobilities of screw and edge dislocations in the body-centered cubic MoNbTaW RHEA over a wide temperature range using extensive molecular dynamics simulations based on a highly-accurate machine-learning interatomic potential. Further, we specifically evaluate how these mechanisms are affected by the presence of SRO. The mobility of edge dislocations is found to be enhanced by the presence of SRO, whereas the rate of double-kink nucleation in the motion of screw dislocations is reduced, although this influence of SRO appears to be attenuated at increasing temperature. Independent of the presence of SRO, a cross-slip locking mechanism is observed for the motion of screws, which provides for extra strengthening for refractory high-entropy alloy system.


2021 ◽  
Vol 295 ◽  
pp. 129753
Author(s):  
Wenchao Wei ◽  
Tao Wang ◽  
Chunyu Wang ◽  
Meng Wu ◽  
Yunpeng Nie ◽  
...  

2021 ◽  
Author(s):  
Shailesh Kumar Singh ◽  
Vivek K. Singh

The conventional design approach of alloys initiates with one principal element and continues by adding several alloying elements to obtain desired properties. In this method, the intrinsic properties of the designed alloy are governed by the principal element. For example, in steel alloy, iron is the principal element, Aluminium in aluminium alloy, and so on. Compared to the conventional alloy, high entropy alloys do not have any dominating elements; all the elements present in these alloys either have an equal or near-equal ratio of elements. As reported in the literature, these alloys exhibit interesting material properties such as high strength, high hardness, improved elevated temperature strength, and magnetic properties. These characteristics make HEAs a suitable option for high-performance applications in the aero engine, aerospace structures, and machine tools. High entropy alloy has multiple principal elements as shown in schematic diagram 1; it leads to much higher possible compositions than conventional alloys. The huge compositional space provides an opportunity to improve desired mechanical properties. If it is explored through “trial and error,” it will be challenging and cumbersome. Therefore, search schemes that can competently and promptly recognize particular alloys with desired properties are essential. Artificial Intelligence is a useful tool to model, discover, and optimize new alloys that enable predicting individual material properties as a function of composition. While the application of Artificial Intelligence is quite popular in many aspects of society, its usage in material informatics is still in the nascent stage. The algorithm used in artificial intelligence is trained to pick up predictive rules from data and create a material model quicker than a computational model and can even generate the model for which no physical model exists. Artificial Intelligence (AI) allows predicting a set of experiments to be conducted to detect new alloy having desired properties. Thus, AI can be used as a valuable tool to optimize the development of new alloys.


2020 ◽  
Vol 321 ◽  
pp. 04006
Author(s):  
John Mantione ◽  
Matias Garcia-Avila ◽  
Matthew Arnold ◽  
David Bryan ◽  
John Foltz

The attractive combination of strength and low density has resulted in titanium alloys covering 15 to 25% of the weight of a modern jet engine, with titanium currently being used in fan, compressor and nozzle components. Typically, titanium alloys used in jet engine applications are selected from the group of near alpha and alpha-beta titanium alloys, which exhibit superior elevated temperature strength, creep resistance and fatigue life compared to typical titanium alloys such as Ti-6Al-4V. Legacy titanium alloys for elevated temperature jet engine applications include Ti-5Al-2Sn-2Zr-4Mo-4Cr, Ti-6Al-2Sn-4Zr-2Mo-0.1Si and Ti-4Al-4Mo-2Sn-0.5Si. Improving the mechanical behavior of these alloys enables improved component performance, which is crucial to advancing jet engine performance. As a world leader in supplying advanced alloys of titanium, nickel, cobalt, and specialty stainless steels, ATI is developing new titanium alloys with improved elevated temperature properties. These improved properties derive from precipitation of secondary intermetallics in alpha-beta titanium alloys. ATI has developed several new alpha-beta titanium alloy compositions which exhibit significantly improved elevated temperature strength and creep resistance. This paper will focus on the effects of chemistry and heat treat conditions on the microstructure and resulting elevated temperature properties of these new aerospace titanium alloys.


Sign in / Sign up

Export Citation Format

Share Document