scholarly journals Effect of ion nitriding by glow discharge on the physical and mechanical properties of the plastically deformed tool steel R6M5

2021 ◽  
Vol 2064 (1) ◽  
pp. 012052
Author(s):  
R K Vafin ◽  
A V Asylbaev ◽  
D V Mamontov ◽  
I D Sklizkov ◽  
G I Raab ◽  
...  

Abstract This work is devoted to the study of the effect of the duration of ion nitriding by glow discharge on the physical and mechanical properties of tool steel with different initial structure. We used specimens of R6M5 tool steel with a coarse-grained structure obtained after annealing at a temperature of 850°C and with a fine-grained structure obtained after severe plastic deformation by torsion discharge. With an increase in the duration of ion nitriding, the thickness of the hardened layer and wear resistance increase. The combination of plastic deformation with ion nitriding by glow discharge increases the adsorption and diffusion rate of the saturating element due to the creation of a highly fragmented and disoriented fine-grained structure and contributed to reduction in processing time.

2011 ◽  
Vol 409 ◽  
pp. 474-479 ◽  
Author(s):  
C. Chan ◽  
J.L. McCrea ◽  
G. Palumbo ◽  
Uwe Erb

Monolithic and multilayered iron electrodeposits were successfully synthesized by the pulse plating electrodeposition method. Electron microscopy and Vickers microhardness measurements were used to investigate the microstructure and mechanical properties of the iron electrodeposits produced. Two types of monolithic iron coatings were produced, one with a coarse grained, columnar structure and the other with an ultra-fine grained structure. Hall-Petch type grain size strengthening was observed in these monolithic coatings. Multilayered iron coatings composed of alternating layers of coarse grained and fine grained structures were also produced. The hardness value of the multilayered coatings falls between the hardness values for the two types of monolithic coatings produced. This study has demonstrated the possibility of applying a multilayered structure design to tailor the microstructure and mechanical properties of electrodeposited iron coatings.


2014 ◽  
Vol 1040 ◽  
pp. 819-823 ◽  
Author(s):  
Aleksander S. Ivashutenko ◽  
Nikita Martyushev ◽  
Igor G. Vidayev

Technology for manufacturing products by magnetic pulse compaction from oxide powders of the (ZrO2 – Y2O3) – Al2O3 system is presented in the paper. Diagram of the magnetic-pulse press with its operating principle being based on Ampere's law is given. Physical and mechanical properties of the obtained compacts are determined. The main feature of the designed technology is the reduced sintering temperature (200 °С) and the acquired fine-grained structure of the products. Another significant advantage achieved by applying the technology is the possibility for manufacturing fine-grained structure ceramic products with high mechanical properties.


2010 ◽  
Vol 667-669 ◽  
pp. 487-492
Author(s):  
Alla Kipelova ◽  
Ilya Nikulin ◽  
Sergey Malopheyev ◽  
Rustam Kaibyshev

Microstructural changes during equal channel angular pressing (ECAP) at the temperatures of 250 and 300°C to the strains ~4, ~8 and ~12 were studied in a coarse-grained Al-5.4%Mg-0.5%Mn-0.1%Zr alloy. At a strain of ~4, the microstructural evolution is mainly characterized by the development of well-defined subgrains within interiors of initial grains and the formation of fine grains along original boundaries. Further straining leads to increase in the average misorientation angle, the fraction of high-angle grain boundaries and the fraction of new grains. However, only at 300°C, the plastic deformation to a strain of ~12 leads to the formation of almost uniform submicrocrystalline (SMC) grained structure with an average crystallites size of ~ 0.5 m. At 250°C, the microstructure remains non-uniform and consists of subgrains and new recrystallized grains. The mechanism of new SMC structure formation after ECAP is discussed.


2014 ◽  
Vol 1040 ◽  
pp. 845-849 ◽  
Author(s):  
Aleksander S. Ivashutenko ◽  
Nikita Martyushev ◽  
Igor G. Vidayev ◽  
Kirill S. Kostikov

The article is devoted to the investigation of alumina-zirconia ceramics properties depending on its production technology. Analysis of the technological factors that allow acquiring fine-grained structure as well as high physical and mechanical properties of alumina-zirconia ceramics is presented in the paper. It is shown that when using magnetic pulse compaction due to the pulse impact and adiabaticity of the process the most compact structure is formed. It is possible to obtain pressings with the density of up to 68% of the theoretical value. The obtained compact structure secures high physical, mechanical, and operating characteristics of the finished product.


Hydrocarbon gels contain a number of materials, such as rubber, greases, saponified mineral oils, etc., of great interest for various engineering purposes. Specific requirements in mechanical properties have been met by producing gels in appropriately chosen patterns of constituent components of visible, colloidal, molecular and atomic sizes, ranging from coarse-grained aggregates, represented by sponges, foams, emulsions, etc.; to fine-grained and apparently homogeneous ones, represented by optically clear compounds. The engineer who has to deal with the whole range of such materials will adopt a macroscopic point of view, based on an apparent continuity of all the material structures and of the distributions in space and time of the displacements and forces occurring under mechanical actions. It has been possible to determine these distributions in the framework of a comprehensive scheme in which the fundamental principles of the mechanics of continuous media provide the theoretical basis, and a testing instrument of new design, termed Rheogoniometer, the means of experimental measurement (Weissenberg 1931, 1934, 1946, 1947, 1948).


2011 ◽  
Vol 29 (4) ◽  
pp. 333-345 ◽  
Author(s):  
Yuan-Qin Xu ◽  
Pei-Ying Li ◽  
Ping Li ◽  
Le-Jun Liu ◽  
Cheng-Xiao Cao ◽  
...  

Author(s):  
Georg Frommeyer ◽  
Sven Knippscheer

Aluminum-rich intermetallic compounds of the Al3X-type with transmission metals (X = Ti. Zr, Nb, V) of Groups IVb and Vb are of interest in the development of novel high-temperature and lightweight structural materials. This article describes the important physical and mechanical properties of trialuminides with DO22 structure and their L12 variations. Topical coverage includes: crystal structure and selected physical properties, plastic deformation, oxidation behavior, and applications.


2017 ◽  
Vol 23 (3) ◽  
pp. 222 ◽  
Author(s):  
Ondřej Hilšer ◽  
Stanislav Rusz ◽  
Wojciech Maziarz ◽  
Jan Dutkiewicz ◽  
Tomasz Tański ◽  
...  

<p>Equal channel angular pressing (ECAP) method was used for achieving very fine-grained structure and increased mechanical properties of AZ31 magnesium alloy. The experiments were focused on the, in the initial state, hot extruded alloy. ECAP process was realized at the temperature 250°C and following route Bc. It was found that combination of hot extrusion and ECAP leads to producing of material with significantly fine-grained structure and improves mechanical properties. Alloy structure after the fourth pass of ECAP tool with helix matrix 30° shows a fine-grained structure with average grain size of 2 µm to 3 µm and high disorientation between the grains. More experimental results are discussed in this article.</p>


Sign in / Sign up

Export Citation Format

Share Document