scholarly journals The study of instabilities role of plasma in the high-voltage discharge formation initiated by optical radiation at high pressures in high-voltage optically triggered switches

2021 ◽  
Vol 2064 (1) ◽  
pp. 012098
Author(s):  
A I Lipchak ◽  
S V Barakhvostov ◽  
N B Volkov ◽  
E A Chingina ◽  
I S Turmyshev

Abstract The paper presents the experimental results of triggering a high-voltage gas gap by YAG: Nd3+ laser radiation. The gas gap was used as the primary switch of a high-current pulsed e-beam RADAN-type accelerator. As a result, an operating regime when the instability and delay time appeared to be minimal was experimentally found. The developed gas gap and the found operating regimes sustain the switching instability no more than 0.3 ns. The physical mechanisms determining the switch-on delay and the obtained level of instability are discussed.

2019 ◽  
Vol 45 (6) ◽  
pp. 527-536 ◽  
Author(s):  
A. V. Strikovskiy ◽  
S. V. Korobkov ◽  
M. E. Gushchin ◽  
A. A. Evtushenko ◽  
I. Yu. Zudin

2017 ◽  
Vol 50 (16) ◽  
pp. 165202 ◽  
Author(s):  
A V Agafonov ◽  
V A Bogachenkov ◽  
A P Chubenko ◽  
A V Oginov ◽  
A A Rodionov ◽  
...  

Plasma ◽  
2021 ◽  
Vol 4 (2) ◽  
pp. 309-331
Author(s):  
Wahyu Diono ◽  
Siti Machmudah ◽  
Hideki Kanda ◽  
Yaping Zhao ◽  
Motonobu Goto

The application of high-voltage discharge plasma for water pollutant decomposition and the synthesis of nanoparticles under a high-pressure argon gas environment (~4 MPa) was demonstrated. The experiments were carried out in a batch-type system at room temperature with a pulsed DC power supply (15.4 to 18.6 kV) as a discharge plasma source. The results showed that the electrode materials, the pulsed repetition rates, the applied number of pulses, and the applied voltages had a significant effect on the degradation reactions of organic compounds. Furthermore, carbon solid materials from glycine decomposition were generated during the high-voltage discharge plasma treatment under high-pressure conditions, while Raman spectra and the HRTEM images indicated that titanium dioxide with a brookite structure and titanium carbide nanoparticles were also formed under these conditions. It was concluded that this process is applicable in practice and may lead to advanced organic compound decomposition and metal-based nanoparticle synthesis technologies.


Author(s):  
Cesar Celis ◽  
Érica Xavier ◽  
Tairo Teixeira ◽  
Gustavo R. S. Pinto

This work describes the development and implementation of a signal analysis module which allows the reliable detection of operating regimes in industrial gas turbines. Its use is intended for steady state-based condition monitoring and diagnostics systems. This type of systems requires the determination of the operating regime of the equipment, in this particular case, of the industrial gas turbine. After a brief introduction the context in which the signal analysis module is developed is highlighted. Next the state of the art of the different methodologies used for steady state detection in equipment is summarized. A detailed description of the signal analysis module developed, including its different sub systems and the main hypotheses considered during its development, is shown to follow. Finally the main results obtained through the use of the module developed are presented and discussed. The results obtained emphasize the adequacy of this type of procedures for the determination of operating regimes in industrial gas turbines.


2012 ◽  
Vol 37 (2) ◽  
pp. 259 ◽  
Author(s):  
Kaimin Guo ◽  
Jingquan Lin ◽  
Zuoqiang Hao ◽  
Xun Gao ◽  
Zhenming Zhao ◽  
...  

Development ◽  
1990 ◽  
Vol 110 (1) ◽  
pp. 1-18 ◽  
Author(s):  
S.A. Newman ◽  
W.D. Comper

The role of ‘generic’ physical mechanisms in morphogenesis and pattern formation of tissues is considered. Generic mechanisms are defined as those physical processes that are broadly applicable to living and non-living systems, such as adhesion, surface tension and gravitational effects, viscosity, phase separation, convection and reaction-diffusion coupling. They are contrasted with ‘genetic’ mechanisms, a term reserved for highly evolved, machine-like, biomolecular processes. Generic mechanisms acting upon living tissues are capable of giving rise to morphogenetic rearrangements of cytoplasmic, tissue and extracellular matrix components, sometimes leading to ‘microfingers’, and to chemical waves or stripes. We suggest that many morphogenetic and patterning effects are the inevitable outcome of recognized physical properties of tissues, and that generic physical mechanisms that act on these properties are complementary to, and interdependent with genetic mechanisms. We also suggest that major morphological reorganizations in phylogenetic lineages may arise by the action of generic physical mechanisms on developing embryos. Subsequent evolution of genetic mechanisms could stabilize and refine developmental outcomes originally guided by generic effects.


Sign in / Sign up

Export Citation Format

Share Document