scholarly journals Comparison of various algorithms based on TSP solving

2021 ◽  
Vol 2083 (3) ◽  
pp. 032007
Author(s):  
JianChen Zhang

Abstract The traveling salesman problem (TSP) is a classic combinatorial optimization problem. As a hot research problem, it has been applied in many fields. Since there is currently no algorithm with good performance that can perfectly solve this problem, for the solution of the traveling salesman problem, this article first establishes a mathematical model of the traveling salesman problem, and uses four solving methods for the same case: the greedy method, Branch and bound method, dynamic programming method and genetic algorithm, analyze the applicability and accuracy of different algorithms in the same case.

2009 ◽  
Vol 50 ◽  
pp. 173-180
Author(s):  
Alfonsas Misevičius ◽  
Andrius Blažinskas ◽  
Jonas Blonskis ◽  
Vytautas Bukšnaitis

Šiame straipsnyje nagrinėjami klausimai, susiję su genetinių algoritmų taikymu, sprendžiant gerai žinomą kombinatorinio optimizavimo uždavinį – komivojažieriaus uždavinį (KU) (angl. traveling salesman problem). Svarstoma, jog genetinio algoritmo efektyvumui didelę įtaką turi uždavinio specifi nės savybės, todėl labai svarbu kūrybiškai sudaryti genetinį algoritmą konkrečiam sprendžiamam uždaviniui. Pateikiami eksperimentų, atliktų su realizuotu genetiniu algoritmu, rezultatai, iliustruojantys skirtingų veiksnių įtaką rezultatų kokybei. Konstatuojama, kad tinkamas genetinių operatorių ir lokaliojo individų (sprendinių) gerinimo derinimas leidžia gerokai padidinti genetinės paieškos efektyvumą.On the Genetic Algorithms for the Traveling Salesman Problem: Negative and Positive AspectsAlfonsas Misevičius, Andrius Blažinskas, Jonas Blonskis, Vytautas Bukšnaitis SummaryIn this paper, we discuss some issues related to the application of genetic algorithms (GAs) to the well-known combinatorial optimization problem – the traveling salesman problem (TSP). The results obtained from the experiments with the different variants of the genetic algorithm are presented as well. Based on these results, it is concluded that the effi ciency of the genetic search is much infl uenced by both the specifi c nature of the problem and the features of the algorithm itself. In particular, it should be emphasized that the incorporation of the (postcrossover) procedures for the local improvement of offspring has one of the crucial roles in obtaining high-quality solutions.


1997 ◽  
Vol 11 (13) ◽  
pp. 1519-1544 ◽  
Author(s):  
Yoshiyuki Usami ◽  
Masatoshi Kitaoka

We introduce statistical physics approaches to the traveling salesman problem (TSP). TSP is a kind of combinatorial optimization problem which is known to be difficult to solve exactly for large size systems. We develop a new method for solving the TSP based on an idea of real space renormalization theory. It will be shown that the TSP has self similar characteristics, hence the renormalization frame works well for solving the problem. Statistical physics formalism is also presented on solving the TSP by simulated annealing (SA) algorithm. Analytic expression for temperature dependence of the path length is given and compared to numerical simulation. Throughout this work we will provide a new insight to this kind of optimization problem from a viewpoint of statistical physics.


2015 ◽  
Vol 112 (3) ◽  
pp. 663-668 ◽  
Author(s):  
Ross Anderson ◽  
Itai Ashlagi ◽  
David Gamarnik ◽  
Alvin E. Roth

As of May 2014 there were more than 100,000 patients on the waiting list for a kidney transplant from a deceased donor. Although the preferred treatment is a kidney transplant, every year there are fewer donors than new patients, so the wait for a transplant continues to grow. To address this shortage, kidney paired donation (KPD) programs allow patients with living but biologically incompatible donors to exchange donors through cycles or chains initiated by altruistic (nondirected) donors, thereby increasing the supply of kidneys in the system. In many KPD programs a centralized algorithm determines which exchanges will take place to maximize the total number of transplants performed. This optimization problem has proven challenging both in theory, because it is NP-hard, and in practice, because the algorithms previously used were unable to optimally search over all long chains. We give two new algorithms that use integer programming to optimally solve this problem, one of which is inspired by the techniques used to solve the traveling salesman problem. These algorithms provide the tools needed to find optimal solutions in practice.


2021 ◽  
pp. 21-44
Author(s):  
Boris Melnikov ◽  
◽  
Elena Melnikova ◽  

In the computer literature, a lot of problems are described that can be called discrete optimization problems: from encrypting information on the Internet (including creating programs for digital cryptocurrencies) before searching for “interests” groups in social networks. Often, these problems are very difficult to solve on a computer, hence they are called “intractable”. More precisely, the possible approaches to quickly solving these problems are difficult to solve (to describe algorithms, to program); the brute force solution, as a rule, is programmed simply, but the corresponding program works much slower. Almost every one of these intractable problems can be called a mathematical model. At the same time, both the model itself and the algorithms designed to solve it are often created for one subject area, but they can also be used in many other areas. An example of such a model is the traveling salesman problem. The peculiarity of the problem is that, given the relative simplicity of its formulation, finding the optimal solution (the optimal route). This problem is very difficult and belongs to the so-called class of NP-complete problems. Moreover, according to the existing classification, the traveling salesman problem is an example of an optimization problem that is an example of the most complex subclass of this class. However, the main subject of the paper is not the problem, but the method of its soluti- on, i.e. the branch and bound method. It consists of several related heuristics, and in the monographs, such a multi-heuristic branch and bound method was apparently not previously noted: the developers of algorithms and programs should have understood this themselves. At the same time, the method itself can be applied (with minor changes) to many other discrete optimization problems. So, the classical version of branch and bound method is the main subject of this paper, but also important is the second subject, i.e. the traveling salesman problem, also in the classical formulation. The paper deals with the application of the branch and bound method in solving the traveling salesman problem, and about this application, we can also use the word “classical”. However, in addition to the classic version of this implementation, we consider some new heuristics, related to the need to develop real-time algorithms.


2002 ◽  
Vol 12 (03n04) ◽  
pp. 203-218 ◽  
Author(s):  
GURSEL SERPEN ◽  
JOEL CORRA

This paper proposes a non-recurrent training algorithm, resilient propagation, for the Simultaneous Recurrent Neural network operating in relaxation-mode for computing high quality solutions of static optimization problems. Implementation details related to adaptation of the recurrent neural network weights through the non-recurrent training algorithm, resilient backpropagation, are formulated throughan algebraic approach. Performance of the proposed neuro-optimizer on a well-known static combinatorial optimization problem, the Traveling Salesman Problem, is evaluated on the basis of computational complexity measures and, subsequently, compared to performance of the Simultaneous Recurrent Neural network trained with the standard backpropagation, and recurrent backpropagation for the same static optimization problem. Simulation results indicate that the Simultaneous Recurrent Neural network trained with the resilient backpropagation algorithm is able to locate superior quality solutions through comparable amount of computational effort for the Traveling Salesman Problem.


2013 ◽  
Vol 411-414 ◽  
pp. 2694-2697
Author(s):  
Pei Guang Wang ◽  
Xing Min Qi ◽  
Xiao Ping Zong ◽  
Ling Ling Zhu

In order to improve the efficiency of automated warehouse, the order-picking task of the fixed shelve was researched and analysed. The picking mathematical model of automated warehouse was established and attributed to the classical traveling salesman problem (TSP) model. At the same time, using an improved genetic algorithms(improved GAs) solved the optimization problem. Firstly, the initial population of the algorithm was optimized, and then a 'reverse evolution operator' was introduced in the improved genetic algorithms because of the lack of local optimization ability of genetic algorithm. Results of experiments verify that the method can acquire satisfying the demands of the route picking and optimization of speed.


2021 ◽  
Vol 27 (1) ◽  
pp. 3-8
Author(s):  
M. V. Ulyanov ◽  
◽  
M. I. Fomichev ◽  
◽  
◽  
...  

The exact algorithm that implements the Branch and Boimd method with precomputed tour which is calculated by Lin-Kernighan-Helsgaun metaheuristic algorithm for solving the Traveling Salesman Problem is concerned here. Reducing the number of decision tree nodes, which are created by the Branches and Bound method, due to a "good" precomputed tour leads to the classical balancing dilemma of time costs. A tour that is close to optimal one takes time, even when the Lin-Kernighan-Helsgaun algorithm is used, however it reduces the working time of the Branch and Bound method. The problem of determining the scope of such a combined algorithm arises. In this article it is solved by using a special characteristic of the individual Traveling Salesman Problem — the number of changes tracing direction in the search decision tree generated by the Branch and Bound Method. The use of this characteristic allowed to divide individual tasks into three categories, for which, based on experimental data, recommendations of the combined algorithm usage are formulated. Based on the data obtained in a computational experiment (in range from 30 to 45), it is recommended to use a combined algorithm for category III problems starting with n = 36, and for category II problems starting with n = 42.


2013 ◽  
Vol 694-697 ◽  
pp. 2901-2904 ◽  
Author(s):  
Xiao Yan Yun

The traveling salesman problem (TSP) has been an important problem in the field of distribution and logistics and it is clearlyNP-hard combinatorial optimization problem and difficult to solve. This paper gives a review of achievements of different types of Algorithms for the traveling sales man problem and outlines these advantages and limitation for these algorithms, including dynamic program, brand and bound, genetic algorithm and estimation of distribution algorithms. In addition, some of the most powerful efficiency enhancement techniques applied to TSP is discussed and quite a few common conditions of different methods for TSP are summarized. Finally, some future research direction and content are proposed.


Sign in / Sign up

Export Citation Format

Share Document