scholarly journals Research on Automated Information System of Non-sense Attendance Using Face Recognition and Large Database

2021 ◽  
Vol 2083 (4) ◽  
pp. 042010
Author(s):  
Taiyou Wang ◽  
Litiao Chen

Abstract In order to meet the needs of today’s large-scale enterprise human resource management attendance business, this paper designs an embedded face recognition attendance system, and designs and analyses the implementation method of the system in detail. The system consists of two parts: face-swiping attendance and attendance management. Among them, face-swiping time attendance uses the Face Boxes model to detect faces, and the Face Net model to identify the person who punches in. Tests have found that the system is simple to operate, has high recognition accuracy, and has a certain practical value.

2021 ◽  
Author(s):  
◽  
Ella Macaskill

<p>Face recognition is a fundamental cognitive function that is essential for social interaction – yet not everyone has it. Developmental prosopagnosia is a lifelong condition in which people have severe difficulty recognising faces but have normal intellect and no brain damage. Despite much research, the component processes of face recognition that are impaired in developmental prosopagnosia are not well understood. Two core processes are face perception, being the formation of visual representations of a currently seen face, and face memory, being the storage, maintenance, and retrieval of those representations. Most studies of developmental prosopagnosia focus on face memory deficits, but a few recent studies indicate that face perception deficits might also be important. Characterising face perception in developmental prosopagnosia is crucial for a better understanding of the condition. In this thesis, I addressed this issue in a large-scale experiment with 108 developmental prosopagnosics and 136 matched controls. I assessed face perception abilities with multiple measures and ran a broad range of analyses to establish the severity, scope, and nature of face perception deficits in developmental prosopagnosia. Three major results stand out. First, face perception deficits in developmental prosopagnosia were severe, and could be comparable in size to face memory deficits. Second, the face perception deficits were widespread, affecting the whole sample rather than a subset of individuals. Third, the deficits were mainly driven by impairments to mechanisms specialised for processing upright faces. Further analyses revealed several other features of the deficits, including the use of atypical and inconsistent strategies for perceiving faces, difficulties matching the same face across different pictures, equivalent impact of lighting and viewpoint variations in face images, and atypical perceptual and non-perceptual components of test performance. Overall, my thesis shows that face perception deficits are more central to developmental prosopagnosia than previously thought and motivates further research on the issue.</p>


Author(s):  
Taha H. Rassem ◽  
Nasrin M. Makbol ◽  
Sam Yin Yee

Nowadays, face recognition becomes one of the important topics in the computer vision and image processing area. This is due to its importance where can be used in many applications. The main key in the face recognition is how to extract distinguishable features from the image to perform high recognition accuracy.  Local binary pattern (LBP) and many of its variants used as texture features in many of face recognition systems. Although LBP performed well in many fields, it is sensitive to noise, and different patterns of LBP may classify into the same class that reduces its discriminating property. Completed Local Ternary Pattern (CLTP) is one of the new proposed texture features to overcome the drawbacks of the LBP. The CLTP outperformed LBP and some of its variants in many fields such as texture, scene, and event image classification.  In this study, we study and investigate the performance of CLTP operator for face recognition task. The Japanese Female Facial Expression (JAFFE), and FEI face databases are used in the experiments. In the experimental results, CLTP outperformed some previous texture descriptors and achieves higher classification rate for face recognition task which has reached up 99.38% and 85.22% in JAFFE and FEI, respectively.


Author(s):  
Sangamesh Hosgurmath ◽  
Viswanatha Vanjre Mallappa ◽  
Nagaraj B. Patil ◽  
Vishwanath Petli

Face recognition is one of the important biometric authentication research areas for security purposes in many fields such as pattern recognition and image processing. However, the human face recognitions have the major problem in machine learning and deep learning techniques, since input images vary with poses of people, different lighting conditions, various expressions, ages as well as illumination conditions and it makes the face recognition process poor in accuracy. In the present research, the resolution of the image patches is reduced by the max pooling layer in convolutional neural network (CNN) and also used to make the model robust than other traditional feature extraction technique called local multiple pattern (LMP). The extracted features are fed into the linear collaborative discriminant regression classification (LCDRC) for final face recognition. Due to optimization using CNN in LCDRC, the distance ratio between the classes has maximized and the distance of the features inside the class reduces. The results stated that the CNN-LCDRC achieved 93.10% and 87.60% of mean recognition accuracy, where traditional LCDRC achieved 83.35% and 77.70% of mean recognition accuracy on ORL and YALE databases respectively for the training number 8 (i.e. 80% of training and 20% of testing data).


Author(s):  
Tang-Tang Yi ◽  

In order to solve the problem of low recognition accuracy in recognition of 3D face images collected by traditional sensors, a face recognition algorithm for 3D point cloud collected by mixed image sensors is proposed. The algorithm first uses the 3D wheelbase to expand the face image edge. According to the 3D wheelbase, the noise of extended image is detected, and median filtering is used to eliminate the detected noise. Secondly, the priority of the boundary pixels to recognize the face image in the denoising image recognition process is determined, and the key parts such as the illuminance line are analyzed, so that the recognition of the 3D point cloud face image is completed. Experiments show that the proposed algorithm improves the recognition accuracy of 3D face images, which recognition time is lower than that of the traditional algorithm by about 4 times, and the recognition efficiency is high.


2018 ◽  
Vol 119 (9/10) ◽  
pp. 529-544 ◽  
Author(s):  
Ihab Zaqout ◽  
Mones Al-Hanjori

Purpose The face recognition problem has a long history and a significant practical perspective and one of the practical applications of the theory of pattern recognition, to automatically localize the face in the image and, if necessary, identify the person in the face. Interests in the procedures underlying the process of localization and individual’s recognition are quite significant in connection with the variety of their practical application in such areas as security systems, verification, forensic expertise, teleconferences, computer games, etc. This paper aims to recognize facial images efficiently. An averaged-feature based technique is proposed to reduce the dimensions of the multi-expression facial features. The classifier model is generated using a supervised learning algorithm called a back-propagation neural network (BPNN), implemented on a MatLab R2017. The recognition rate and accuracy of the proposed methodology is comparable with other methods such as the principle component analysis and linear discriminant analysis with the same data set. In total, 150 faces subjects are selected from the Olivetti Research Laboratory (ORL) data set, resulting 95.6 and 85 per cent recognition rate and accuracy, respectively, and 165 faces subjects from the Yale data set, resulting 95.5 and 84.4 per cent recognition rate and accuracy, respectively. Design/methodology/approach Averaged-feature based approach (dimension reduction) and BPNN (generate supervised classifier). Findings The recognition rate is 95.6 per cent and recognition accuracy is 85 per cent for the ORL data set, whereas the recognition rate is 95.5 per cent and recognition accuracy is 84.4 per cent for the Yale data set. Originality/value Averaged-feature based method.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 944
Author(s):  
Stefano Pini ◽  
Guido Borghi ◽  
Roberto Vezzani ◽  
Davide Maltoni ◽  
Rita Cucchiara

Nowadays, we are witnessing the wide diffusion of active depth sensors. However, the generalization capabilities and performance of the deep face recognition approaches that are based on depth data are hindered by the different sensor technologies and the currently available depth-based datasets, which are limited in size and acquired through the same device. In this paper, we present an analysis on the use of depth maps, as obtained by active depth sensors and deep neural architectures for the face recognition task. We compare different depth data representations (depth and normal images, voxels, point clouds), deep models (two-dimensional and three-dimensional Convolutional Neural Networks, PointNet-based networks), and pre-processing and normalization techniques in order to determine the configuration that maximizes the recognition accuracy and is capable of generalizing better on unseen data and novel acquisition settings. Extensive intra- and cross-dataset experiments, which were performed on four public databases, suggest that representations and methods that are based on normal images and point clouds perform and generalize better than other 2D and 3D alternatives. Moreover, we propose a novel challenging dataset, namely MultiSFace, in order to specifically analyze the influence of the depth map quality and the acquisition distance on the face recognition accuracy.


2021 ◽  
Author(s):  
Ella Macaskill

<p>Face recognition is a fundamental cognitive function that is essential for social interaction – yet not everyone has it. Developmental prosopagnosia is a lifelong condition in which people have severe difficulty recognising faces but have normal intellect and no brain damage. Despite much research, the component processes of face recognition that are impaired in developmental prosopagnosia are not well understood. Two core processes are face perception, being the formation of visual representations of a currently seen face, and face memory, being the storage, maintenance, and retrieval of those representations. Most studies of developmental prosopagnosia focus on face memory deficits, but a few recent studies indicate that face perception deficits might also be important. Characterising face perception in developmental prosopagnosia is crucial for a better understanding of the condition. In this thesis, I addressed this issue in a large-scale experiment with 108 developmental prosopagnosics and 136 matched controls. I assessed face perception abilities with multiple measures and ran a broad range of analyses to establish the severity, scope, and nature of face perception deficits in developmental prosopagnosia. Three major results stand out. First, face perception deficits in developmental prosopagnosia were severe, and could be comparable in size to face memory deficits. Second, the face perception deficits were widespread, affecting the whole sample rather than a subset of individuals. Third, the deficits were mainly driven by impairments to mechanisms specialised for processing upright faces. Further analyses revealed several other features of the deficits, including the use of atypical and inconsistent strategies for perceiving faces, difficulties matching the same face across different pictures, equivalent impact of lighting and viewpoint variations in face images, and atypical perceptual and non-perceptual components of test performance. Overall, my thesis shows that face perception deficits are more central to developmental prosopagnosia than previously thought and motivates further research on the issue.</p>


2020 ◽  
Vol 12 (1) ◽  
pp. 35-39
Author(s):  
Jason Adrian Mahalim ◽  
Muhamad Aliefian Rahmatulloh ◽  
Muhamad Rizky Febrianto ◽  
Nabila Husna Shabrina

Face recognition is one of the biometric categories which uses face as the identifier. Currently, there are two versions of face recognition, 2 dimensional and 3 dimensional. This research uses 3 dimensional face recognition, and the goal for this research is for comparing the accuracy between 2 dimensional and 3 dimensional face recognition, analyze the performance of 3 dimensional face recognition, and applying 3dimensional face recognition for security measure, namely for automatic door lock using face recognition. Face Alignment Network used as the method for this 3 dimensional face recognition. This research prove that 3 dimensional face recognition have better accuracy than its predecessor, however some weakness is also found in this research, i.e. image resolution, lighting of the photo, angle of the face when the photo taken will govern the accuracy of the 3 dimensional face recognition and 3 dimensional face recognition can’t differentiatebetween twins brother faces.Key word : Face recognition, accuracy


Sign in / Sign up

Export Citation Format

Share Document