scholarly journals Research and application of graphic software architecture for power grid dispatching control system

2021 ◽  
Vol 2087 (1) ◽  
pp. 012099
Author(s):  
CaiShen Fang ◽  
Zhimeng Lv ◽  
Yuan He ◽  
Hui Peng ◽  
Kun Huang ◽  
...  

Abstract Currently, the independent design and development of power grid automation system cannot meet the urgent requirements of integrated system for electric dispatching, monitoring and synthetic analysis and decision-masking. In accordance with this situation, a general power grid dispatching control graphics software architecture based on the modular hierarchical theory is proposed. The architecture extracts and abstracts the common modules of different system graphics software architectures to build an integrated basic development platform. Based on this platform, an integrated graphical interactive software for power grid dispatching, power distribution network or substation supervision can be quickly developed. In this paper, the overall architecture, modular hierarchical theory, graphics general API and the key technologies for this architecture are described in detail. This architecture has been applied to the development of multiple power grid control graphics software, and the engineering application is performing well in reality. In a word, the architecture proposed in this paper satisfies the needs of power grid control integration, and effectively reducing system

2018 ◽  
Vol 175 ◽  
pp. 03021
Author(s):  
Liu Penghou

With the development of national economy, the demand for electricity from all walks of life has been gradually increased. People also put forward higher requests to the reliability of power supply. Feeder automation can quickly cut off the faulty line to ensure the safe and stable operation of the line. Under the sustainable development of modern society, people attach a great importance to all aspects of smart power grid construction, which is also significant for the smart grid distribution work. To ensure the reliable and high-quality power supply environment, the scientific and reasonable design and planning of power distribution automation system shall pay attention to arranging power distribution, and the appropriate feeder automation operation mode shall be selected. Only in this way can we ensure that the power outage is short once a fault happening in power grid system. At the same time, the line loss rate can be reduced, the efficiency of power supply can be raised, and issues in power equipment investment can be effectively treated. This paper mainly discusses the design and implementation of feeder automation, puts forward some practical application measures, and provides reference for the stable operation of feeder automation.


Energies ◽  
2021 ◽  
Vol 14 (3) ◽  
pp. 593
Author(s):  
Moiz Muhammad ◽  
Holger Behrends ◽  
Stefan Geißendörfer ◽  
Karsten von Maydell ◽  
Carsten Agert

With increasing changes in the contemporary energy system, it becomes essential to test the autonomous control strategies for distributed energy resources in a controlled environment to investigate power grid stability. Power hardware-in-the-loop (PHIL) concept is an efficient approach for such evaluations in which a virtually simulated power grid is interfaced to a real hardware device. This strongly coupled software-hardware system introduces obstacles that need attention for smooth operation of the laboratory setup to validate robust control algorithms for decentralized grids. This paper presents a novel methodology and its implementation to develop a test-bench for a real-time PHIL simulation of a typical power distribution grid to study the dynamic behavior of the real power components in connection with the simulated grid. The application of hybrid simulation in a single software environment is realized to model the power grid which obviates the need to simulate the complete grid with a lower discretized sample-time. As an outcome, an environment is established interconnecting the virtual model to the real-world devices. The inaccuracies linked to the power components are examined at length and consequently a suitable compensation strategy is devised to improve the performance of the hardware under test (HUT). Finally, the compensation strategy is also validated through a simulation scenario.


Author(s):  
Xin Shen ◽  
Hongchun Shu ◽  
Min Cao ◽  
Nan Pan ◽  
Junbin Qian

In distribution networks with distributed power supplies, distributed power supplies can also be used as backup power sources to support the grid. If a distribution network contains multiple distributed power sources, the distribution network becomes a complex power grid with multiple power supplies. When a short-circuit fault occurs at a certain point on the power distribution network, the size, direction and duration of the short-circuit current are no longer single due to the existence of distributed power, and will vary with the location and capacity of the distributed power supply system. The change, in turn, affects the current in the grid, resulting in the generation and propagation of additional current. This power grid of power electronics will cause problems such as excessive standard mis-operation, abnormal heating of the converter and component burnout, and communication system failure. It is of great and practical significance to study the influence of distributed power in distributed power distribution networks.


2021 ◽  
Vol 2083 (4) ◽  
pp. 042047
Author(s):  
Hongying Liu

Abstract From the perspective of meeting the power quality requirements of users, the article analyses the characteristics of traditional voltage and reactive power control mode and the regional power grid reactive voltage optimization centralized closed-loop control mode (AVC system) based on the dispatch automation system (SCADA/EMS) from the perspective of technical management. Combining the reactive power/voltage real-time optimization control model, a real-time optimization control method of the regional power grid based on the improved differential evolution algorithm is proposed. The particle swarm algorithm is combined with the characteristics of reactive power/voltage control to improve the initial particle quality, reduce the optimization space, and introduce a crossover operator to improve the calculation speed and efficiency of the algorithm. Taking an actual regional power grid as an example, the simulation calculation of reactive power/voltage real-time optimization is carried out. The results show that the proposed algorithm and control strategy are feasible and effective.


Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3605
Author(s):  
Lin ◽  
Yang ◽  
Fan ◽  
Liu ◽  
He ◽  
...  

For the controllability of the transmission power of DC transmission channels, the optimal power distribution (OPD) of AC-DC parallel transmission channels is an effective measure for improving the economic operation of an AC-DC interconnected power grid. A dynamic optimal power flow model for day-ahead OPD of AC-DC parallel transmission channels is established in this paper. The power flow equation constraints of an AC-DC interconnected power grid and the constraints of the discrete regulation requirement of the transmission power of DC channels are considered, which make the OPD model of the AC-DC parallel transmission channels a mixed-integer nonlinear non-convex programming (MINNP) model. Through a cone relaxation transformation and a big M method equivalent transformation, the non-convex terms in the objective function and constraints are executed with the convex relaxation, and the MINNP model is transformed into a mixed-integer second-order cone programming model that can be solved reliably and efficiently using the mature optimization solver GUROBI. Taking an actual large-scale AC-DC interconnected power grid as an example, the results show that the OPD scheme of the AC-DC parallel transmission channels obtained by the proposed algorithm can effectively improve the economical operation of an AC-DC interconnected power grid.


2019 ◽  
Vol 12 (1) ◽  
pp. 4 ◽  
Author(s):  
Samuel Yankson ◽  
Mahdi Ghamkhari

The automatic generation control mechanism in power generators comes into operation whenever an over-supply or under-supply of energy occurs in the power grid. It has been shown that the automatic generation control mechanism is highly vulnerable to load altering attacks. In this type of attack, the power consumption of multiple electric loads in power distribution systems is remotely altered by cyber attackers in such a way that the automatic generation control mechanism is disrupted and is hindered from performing its pivotal role. The existing literature on load altering attacks has studied implementation, detection, and location identification of these attacks. However, no prior work has ever studied design of an attack-thwarting system that can counter load altering attacks, once they are detected in the power grid. This paper addresses the above shortcoming by proposing an attack-thwarting system for countering load altering attacks. The proposed system is based on provoking real-time adjustment in power consumption of the flexible loads in response to the frequency disturbances caused by the load altering attacks. To make the adjustments in-proportion to the frequency disturbances, the proposed attack-thwarting system uses a transactive energy framework to establish a coordination between the flexible loads and the power grid operator.


Sign in / Sign up

Export Citation Format

Share Document