scholarly journals Development of Smart Earth Leakage Circuit Breaker Using IoT and Power Electronics

2021 ◽  
Vol 2089 (1) ◽  
pp. 012028
Author(s):  
Rashesh Mehta ◽  
Junaid Saiyad ◽  
Niyatee Smart ◽  
Gordhan Mali ◽  
Vithal Kamat

Abstract The Smart Earth Leakage Circuit Breaker research is based on IoT& power electronics-based protective switchgear for domestic consumers for the protection against earth leakage faults. In this paper, we have shown how to create a custom web server using HTML and CSS language and hosting this webserver to ESP module using Serial Peripheral Flash File System (SPIFFS). Along with protection against earth fault it provides, controlling of tripping current or fault current, monitoring voltage, power, current, power factor parameters of the connected load, monitoring fault parameters, Indicating the device status whether the ELCB is on or off, and the condition of ELCB it is in faulty condition or healthy condition and to let the user set the value of the tripping current on the webserver at which the ELCB must trip.

Author(s):  
Pablo Mourente Miguel

AbstractAfter a phase to earth fault in a transmission line, opening of the circuit breaker poles at line extremities interrupts the fault current in the faulted phase. However, due to coupling between phases there is still a residual current through the electric arc, which is then denominated secondary arc. Interruption of the secondary arc defines if single pole reclosing operation will succeed. Nowadays, studies evaluate the likelihood of secondary arc interruption to define application of single phase reclosing. By several reasons, the secondary arc interruption may not occur leading the single pole reclosing operation to a failure. In this case, the circuit breaker pole has to open again and that depletes the energy stored in the operating mechanism. As the rated operating cycle of a fast reclosing circuit breaker is O – 0,3 s – CO – 15 s CO, a failure in the first reclosing shot makes necessary an interval longer than 15 s to perform a second reclosing shot. The methodology presented herein establishes a verification beforehand if a single pole reclosing will be successful. With the secondary arc still active, the single pole reclosing is blocked and the system proceeds to a three pole reclosing. Blocking of the first reclosing shot keeps the energy stored in the operating mechanism and the three pole reclosing shot may proceed with an interval of 300 ms.


Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1204
Author(s):  
Gul Ahmad Ludin ◽  
Mohammad Amin Amin ◽  
Hidehito Matayoshi ◽  
Shriram S. Rangarajan ◽  
Ashraf M. Hemeida ◽  
...  

This paper proposes a new and surge-less solid-state direct current (DC) circuit breaker in a high-voltage direct current (HVDC) transmission system to clear the short-circuit fault. The main purpose is the fast interruption and surge-voltage and over-current suppression capability analysis of the breaker during the fault. The breaker is equipped with series insulated-gate bipolar transistor (IGBT) switches to mitigate the stress of high voltage on the switches. Instead of conventional metal oxide varistor (MOV), the resistance–capacitance freewheeling diodes branch is used to bypass the high fault current and repress the over-voltage across the circuit breaker. The topology and different operation modes of the proposed breaker are discussed. In addition, to verify the effectiveness of the proposed circuit breaker, it is compared with two other types of surge-less solid-state DC circuit breakers in terms of surge-voltage and over-current suppression. For this purpose, MATLAB Simulink simulation software is used. The system is designed for the transmission of 20 MW power over a 120 km distance where the voltage of the transmission line is 220 kV. The results show that the fault current is interrupted in a very short time and the surge-voltage and over-current across the proposed breaker are considerably reduced compared to other topologies.


Author(s):  
Shimin Xue ◽  
Baibing Liu ◽  
Shouxiang Wang ◽  
Xiao Chen ◽  
Xiaoshuai Zhu ◽  
...  

2014 ◽  
Vol 556-562 ◽  
pp. 1959-1963
Author(s):  
Si Ming Wei ◽  
Yi Gong Zhang ◽  
Huan Liu ◽  
Zhi Qiang Dai ◽  
Xiao Du

It is great significance for development of MTDC (Multi-terminal HVDC) to build DC transmission and distribution grids. However, the relatively low impedance in DC grids makes the fault penetration much faster and deeper .Consequently, fast and reliable DC circuit breaker is needed to isolate faults. Breaking time and other parameters are important for a breaker to achieve its goals. This paper presents a DC circuit breaker with a current-limiting inductance and gets the rising and falling characteristics of fault current. Based on the characteristics, a design method of breaking time sequence will be given, as well as the calculation of current-limiting inductance and the selection principles of arresters. A 10kV DC distribution grid is modeled and simulated by PSCAD/EMTDC to verify that the method can meet the requirements of breaking fault current quickly and reliably.


2021 ◽  
Vol 39 (5A) ◽  
pp. 723-737
Author(s):  
Yamur M. Obied ◽  
Thamir M. Abdul Wahhab

The coordination between protective devices is the process of determining the most appropriate timing of power interruption during abnormal conditions in the power system. The aim of this work is to coordinate the protection of the 33/11 kV power distribution substation in Iraq using the CYME 7.1 software package. In this paper overcurrent and earth fault relays are simulated in two cases, with time delay setting and instantaneous setting, to obtain the Time Current Characteristics (TCC) curves for each Circuit Breaker (CB) relay of Al-Karama substation (2×31.5 MVA, 33/11 kV) in Babil distribution network. The short circuit current at each CB is calculated and accordingly, the protection coordination for Al-Karama substation has been simulated. The TCC curves have been obtained in two cases for overcurrent and earth fault relays; in a case with time delay setting and in the case with the instantaneous setting. The setting takes into consideration the short circuit current at the furthest point of the longest outgoing feeder and the shortest outgoing feeder.


2017 ◽  
Vol 4 (3) ◽  
pp. 234-240 ◽  
Author(s):  
Y. Guo ◽  
H. Zhang ◽  
Y. Yao ◽  
Q. Zhang ◽  
J. D. Yan

A high voltage gas blast circuit breaker relies on the high speed gas flow in a nozzle to remove the energy due to Ohmic heating at high current and to provide strong arc cooling during the current zero period to interrupt a fault current. The physical mechanisms that are responsible for the hugely different arc cooling capabilities of two gases (SF<sub>6</sub> and air) are studied in the present work and important gas material properties controlling the cooling strength identified.


Sign in / Sign up

Export Citation Format

Share Document