scholarly journals Analysis of the effect of synchronization of a group of nonexplosive sources on the results of field work

2021 ◽  
Vol 2094 (2) ◽  
pp. 022081
Author(s):  
O A Maykov

Abstract The article deals with the issues of synchronization of a group of sources for exploration of minerals. A group of 3 impulse sources with different delay times (500,1000,2000 μs) for a two-phase medium is modeled, the upper layer is a water layer 20 meters deep, the lower layer is a layer of sedimentary rocks 350 meters deep. Impulse action is one period of harmonic oscillation with a period of 0.1 s. Time diagrams were recorded at depths of 50 and 100 meters. It is shown that the use of a delay of 2000 μs leads to a halving of the signal amplitude at a depth of 100 meters. The data obtained show that improving the synchronization of a group of sources for the needs of seismic exploration will allow focusing and creating the maximum signal amplitude at a given point.

Geofluids ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Bo Wang ◽  
Jialin Hao ◽  
Shengdong Liu ◽  
Fubao Zhou ◽  
Zhendong Zhang ◽  
...  

To research the elasticity of gas-bearing coal fluid-solid two-phase medium with seismic exploration method is critical to the prevention of gas disasters. To investigate the elasticity, the ultrasonic elastic test of anthracite samples under different gas pressures was carried out and the ultrasonic velocity and anisotropy of the samples were analyzed in this study. The results show that the velocities (P- and S-waves) decrease in turn in the strike, dip, and vertical directions. However, a negative linear correlation is proved to exist between ultrasonic velocity and gas pressure. With the increase of gas pressure, the anisotropy degree of both the P-wave and the S-wave of the samples decreases but the declining degree of the P-wave is greater than that of the S-wave. In addition, the decrease in velocity and the anisotropy degree of the P-wave is greater than that of the S-wave, indicating that the P-wave is more sensitive to gas pressure changes in terms of velocity and its anisotropy degree.


Author(s):  
N. A. Bulychev

In this paper, the plasma discharge in a high-pressure fluid stream in order to produce gaseous hydrogen was studied. Methods and equipment have been developed for the excitation of a plasma discharge in a stream of liquid medium. The fluid flow under excessive pressure is directed to a hydrodynamic emitter located at the reactor inlet where a supersonic two-phase vapor-liquid flow under reduced pressure is formed in the liquid due to the pressure drop and decrease in the flow enthalpy. Electrodes are located in the reactor where an electric field is created using an external power source (the strength of the field exceeds the breakdown threshold of this two-phase medium) leading to theinitiation of a low-temperature glow quasi-stationary plasma discharge.A theoretical estimation of the parameters of this type of discharge has been carried out. It is shown that the lowtemperature plasma initiated under the flow conditions of a liquid-phase medium in the discharge gap between the electrodes can effectively decompose the hydrogen-containing molecules of organic compounds in a liquid with the formation of gaseous products where the content of hydrogen is more than 90%. In the process simulation, theoretical calculations of the voltage and discharge current were also made which are in good agreement with the experimental data. The reaction unit used in the experiments was of a volume of 50 ml and reaction capacity appeared to be about 1.5 liters of hydrogen per minute when using a mixture of oxygen-containing organic compounds as a raw material. During their decomposition in plasma, solid-phase products are also formed in insignificant amounts: carbon nanoparticles and oxide nanoparticles of discharge electrode materials.


1984 ◽  
Vol 49 (1) ◽  
pp. 110-121 ◽  
Author(s):  
Jiří Křepelka ◽  
Drahuše Vlčková ◽  
Milan Mělka

Alkylation of derivatives of 4-aryl-1-naphthols (I-V) by 2,3-epoxypropyl chloride in methanolic sodium hydroxide gave epoxy derivatives VI, VIII, IX, XI and XII, apart from products of cleavage of the oxirane ring, VII and X. Analogous alkylation of compounds I, IV and V by 2-(N,N-diethylamino)ethyl chloride hydrochloride in a two-phase medium afforded basic ethers XIII to XV. The cleavage of the oxirane ring in compound VI by the action of primary and secondary amines, piperidine and substituted piperazines led to compounds XVI-XXIV. Reaction of thionyl chloride with compounds XXI, XXII and XXIV gave chloro derivatives XXV-XXVII.Exposure of compound XXII to 4-methylbenzenesulfonyl chloride produced compound XXVIII, retaining the secondary alcoholic group. In an antineoplastic screening in vivo none of the compounds prepared had an appreciable activity. Compound XVII, being an analogue of propranolol, was used in the test of isoproterenolic tachycardia, and showed a beta-lytic effect comparable with that of propranol.


Author(s):  
Yanick Ricard ◽  
Stéphane Labrosse ◽  
Hidenori Terasaki ◽  
David Bercovici

1989 ◽  
Vol 25 (7) ◽  
pp. 394-396
Author(s):  
V. E. Shcherba ◽  
I. S. Berezin ◽  
S. S. Danilenko ◽  
I. E. Titov ◽  
P. P. Filippov

1996 ◽  
Vol 10 (13n14) ◽  
pp. 1695-1705 ◽  
Author(s):  
S. Ansoldi ◽  
A. Aurilia ◽  
E. Spallucci

We study a functional field theory of membranes coupled to a rank-three tensor gauge potential. We show that gauge field radiative corrections lead to membrane condensation which turns the gauge field into a massive spin-0 field. This is the Coleman-Weinberg mechanism for membranes. An analogy is also drawn with a type-II superconductor. The ground state of the system consists of a two-phase medium in which the superconducting background condensate is “pierced” by four-dimensional domains, or “bags”, of non-superconducting vacuum. Bags are bounded by membranes whose physical thickness is of the order of the inverse mass acquired by the gauge field.


Sign in / Sign up

Export Citation Format

Share Document