scholarly journals Application of regression in algorithm of nonlinear stochastic adaptation of unstable multidimensional objects

2021 ◽  
Vol 2099 (1) ◽  
pp. 012064
Author(s):  
S I Kolesnikova

Abstract The results of a study of applicability of kernel estimation in the synergetic control systems for the objects unstable in an open-loop state (without a stabilizing control) have been presented. The effectiveness of kernel estimates has been shown for four nonlinear objects with unstable limiting states. The estimate the effectiveness of embedding the kernel predictive estimate of the state variables of a nonlinear object, subjected to disturbances of an unknown nature, into the system of synergetic control is demonstrated.

1981 ◽  
Vol 103 (3) ◽  
pp. 173-180 ◽  
Author(s):  
L. M. Sweet

This paper is a review of current research on applications of control systems and theory to achieve energy conservation in automotive vehicles. The development of internal combustion engine control systems that modulate fuel flow, air flow, ignition timing and duration, and exhaust gas recirculation is discussed. The relative advantages of physical and empirical models for engine performance are reviewed. Control strategies presented include optimized open-loop schedule type systems, closed-loop feedback systems, and adaptive controllers. The development of power train and hybrid vehicle control systems is presented, including controllers for both conventional transmissions and those employing flywheel energy storage.


2014 ◽  
Vol 931-932 ◽  
pp. 1298-1302
Author(s):  
Thiang Meadthaisong ◽  
Siwaporn Meadthaisong ◽  
Sarawut Chaowaskoo

Programming control in industrial design is by its nature expert upon an example being Programmable Logic Controller (PLC). Such programmes are unsuitable for children or novices as they cannot understand how to use the programme. This research seeks to present tangible programming for a basic control system in new frameworks in engineering education for children. Such programmes could be for use in kindergartens, primary schools or general teaching where knowledge about basic control is required. Normally open-loop and closed-loop control system programming is taught at university and college level. This may be late as far as acquiring knowledge of basic control systems is concerned. Using tangible programming without a computer but instructions and interface, relay and motor could result in children in kindergartens and primary schools being able to programme open-looped control systems which mix chemicals or closed-loop control systems which control conveyor belts. However, the children would not be able to undertake programming using programmable control in a similar scenario.


A fundamental diagram of a control system for missiles of various classes is investigated. A functional diagram of a control system with an intelligent component for long-range aerodynamic rockets returning to the atmosphere is developed. It is proposed to use in the control loop an ensemble of a priori missile models and models of external influences. It is proposed to improve the accuracy of control systems with an intelligent component by increasing the degree of controllability of the state variables for a priori models. The most convenient numerical criterion of controllability degree for of the state variables of the models is presented. The results of mathematical modeling showed a slight increase in the efficiency of missile control with an increase in the degree of controllability of the pitch angle by changing the coefficients of the control matrix. Keywords rocket; control system; intelligent component; an action acceptor; a priori model; controllability; degree of controllability; management efficiency


Complexity ◽  
2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Hao Wang ◽  
Shousheng Xie ◽  
Weixuan Wang ◽  
Lei Wang ◽  
Jingbo Peng

The problem of unmeasured parameters estimation for distributed control systems is studied in this paper. The Takagi–Sugeno fuzzy model which can appropriate any nonlinear systems is employed, and based on the model, an observer-based fuzzy H∞ filter which has robustness against time-delay, external noise, and system uncertainties is designed. The sufficient condition for the existence of the desired filter is derived in terms of linear matrix inequalities (LMIs) solutions. Moreover, the underdetermined estimation problem in which the number of sensors available is typically less than the number of state variables to be estimated is specifically addressed. A systematic method is proposed to produce a model tuning parameter vector of appropriate dimension for the estimation of the filter, and the optimal transformation matrix is selected via iterative solution to minimize the estimated error. Finally, a simulation example for turbofan aeroengine is given to illustrate the effectiveness of the proposed method, and the estimated error is less than 2.5%.


Author(s):  
Greg Sorge

Automatic controls have been used on all types of machinery since the first complicated machines became popular in the 19th century. Controls are used to maintain pressures, temperatures, operating speeds, flows and many other operating parameters. Natural gas engines have used a variety of controls for various purposes since the first natural gas engines were produced. This paper will discuss the history of mechanical controls used on natural gas engines and the introduction and application of electronic controls. The paper will discuss open loop (mapping) and closed loop (feedback) type controls and common applications of each. Mechanical control systems such as governors, fuel regulators, fuel mixing valves, thermostats, and turbocharger wastegates will be discussed and classified as open or closed loop controls. Electronic control systems such as governors, air/fuel ratio controls, detonation controls, and turbocharger controls will also be discussed and classified. This paper will also discuss state of the art controls which perform numerous functions to get desired performance, and can be communicated with remotely.


Sign in / Sign up

Export Citation Format

Share Document