scholarly journals Progress on 2—loop Amplitude Reduction

2021 ◽  
Vol 2105 (1) ◽  
pp. 012010
Author(s):  
G Bevilacqua ◽  
D D Canko ◽  
A Kardos ◽  
C G Papadopoulos

Abstract We collect results on 2-loop 2 → 3 amplitude reduction computations and discuss the progress done for the upgrade of the HELAC framework, in order to be able to compute 2—loop scattering amplitudes.

2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Enrico Herrmann ◽  
Cameron Langer ◽  
Jaroslav Trnka ◽  
Minshan Zheng

Abstract We initiate the systematic study of local positive spaces which arise in the context of the Amplituhedron construction for scattering amplitudes in planar maximally supersymmetric Yang-Mills theory. We show that all local positive spaces relevant for one-loop MHV amplitudes are characterized by certain sign-flip conditions and are associated with surprisingly simple logarithmic forms. In the maximal sign-flip case they are finite one-loop octagons. Particular combinations of sign-flip spaces can be glued into new local positive geometries. These correspond to local pentagon integrands that appear in the local expansion of the MHV one-loop amplitude. We show that, geometrically, these pentagons do not triangulate the original Amplituhedron space but rather its twin “Amplituhedron-Prime”. This new geometry has the same boundary structure as the Amplituhedron (and therefore the same logarithmic form) but differs in the bulk as a geometric space. On certain two-dimensional boundaries, where the Amplituhedron geometry reduces to a polygon, we check that both spaces map to the same dual polygon. Interestingly, we find that the pentagons internally triangulate that dual space. This gives a direct evidence that the chiral pentagons are natural building blocks for a yet-to-be discovered dual Amplituhedron.


2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Luis F. Alday ◽  
Xinan Zhou

Abstract We demonstrate the simplicity of AdS5× S5 IIB supergravity at one loop level, by studying non-planar holographic four-point correlators in Mellin space. We develop a systematic algorithm for constructing one-loop Mellin amplitudes from the tree-level data, and obtain a simple closed form answer for the $$ \left\langle {\mathcal{O}}_2^{SG}{\mathcal{O}}_2^{SG}{\mathcal{O}}_p^{SG}{\mathcal{O}}_p^{SG}\right\rangle $$ O 2 SG O 2 SG O p SG O p SG correlators. The structure of this expression is remarkably simple, containing only simultaneous poles in the Mellin variables. We also study the flat space limit of the Mellin amplitudes, which reproduces precisely the IIB supergravity one-loop amplitude in ten dimensions. Our results provide nontrivial evidence for the persistence of the hidden conformal symmetry at one loop.


2021 ◽  
Vol 2021 (7) ◽  
Author(s):  
Luke Gayer ◽  
Nicolas Lang ◽  
Sinéad M. Ryan ◽  
David Tims ◽  
Christopher E. Thomas ◽  
...  

Abstract Isospin-1/2 Dπ scattering amplitudes are computed using lattice QCD, working in a single volume of approximately (3.6 fm)3 and with a light quark mass corresponding to mπ ≈ 239 MeV. The spectrum of the elastic Dπ energy region is computed yielding 20 energy levels. Using the Lüscher finite-volume quantisation condition, these energies are translated into constraints on the infinite-volume scattering amplitudes and hence enable us to map out the energy dependence of elastic Dπ scattering. By analytically continuing a range of scattering amplitudes, a $$ {D}_0^{\ast } $$ D 0 ∗ resonance pole is consistently found strongly coupled to the S-wave Dπ channel, with a mass m ≈ 2200 MeV and a width Γ ≈ 400 MeV. Combined with earlier work investigating the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ , and $$ {D}_0^{\ast } $$ D 0 ∗ with heavier light quarks, similar couplings between each of these scalar states and their relevant meson-meson scattering channels are determined. The mass of the $$ {D}_0^{\ast } $$ D 0 ∗ is consistently found well below that of the $$ {D}_{s0}^{\ast } $$ D s 0 ∗ , in contrast to the currently reported experimental result.


2021 ◽  
Vol 2021 (6) ◽  
Author(s):  
Jaume Gomis ◽  
Ziqi Yan ◽  
Matthew Yu

Abstract We uncover a Kawai-Lewellen-Tye (KLT)-type factorization of closed string amplitudes into open string amplitudes for closed string states carrying winding and momentum in toroidal compactifications. The winding and momentum closed string quantum numbers map respectively to the integer and fractional winding quantum numbers of open strings ending on a D-brane array localized in the compactified directions. The closed string amplitudes factorize into products of open string scattering amplitudes with the open strings ending on a D-brane configuration determined by closed string data.


2021 ◽  
Vol 2021 (4) ◽  
Author(s):  
James Drummond ◽  
Jack Foster ◽  
Ömer Gürdoğan ◽  
Chrysostomos Kalousios

Abstract We address the appearance of algebraic singularities in the symbol alphabet of scattering amplitudes in the context of planar $$ \mathcal{N} $$ N = 4 super Yang-Mills theory. We argue that connections between cluster algebras and tropical geometry provide a natural language for postulating a finite alphabet for scattering amplitudes beyond six and seven points where the corresponding Grassmannian cluster algebras are finite. As well as generating natural finite sets of letters, the tropical fans we discuss provide letters containing square roots. Remarkably, the minimal fan we consider provides all the square root letters recently discovered in an explicit two-loop eight-point NMHV calculation.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Aidan Herderschee ◽  
Fei Teng

Abstract We continue the study of open associahedra associated with bi-color scattering amplitudes initiated in ref. [1]. We focus on the facet geometries of the open associahedra, uncovering many new phenomena such as fiber-product geometries. We then provide novel recursion procedures for calculating the canonical form of open associahedra, generalizing recursion relations for bounded polytopes to unbounded polytopes.


2020 ◽  
Vol 2020 (12) ◽  
Author(s):  
Etienne Blanco ◽  
Andreas van Hameren ◽  
Piotr Kotko ◽  
Krzysztof Kutak

Abstract We calculate one loop scattering amplitudes for arbitrary number of positive helicity on-shell gluons and one off-shell gluon treated within the quasi-multi Regge kinematics. The result is fully gauge invariant and possesses the correct on-shell limit. Our method is based on embedding the off-shell process, together with contributions needed to retain gauge invariance, in a bigger fully on-shell process with auxiliary quark or gluon line.


2020 ◽  
Vol 2020 (8) ◽  
Author(s):  
Simon Caron-Huot ◽  
Einan Gardi ◽  
Joscha Reichel ◽  
Leonardo Vernazza

Abstract We study two-to-two parton scattering amplitudes in the high-energy limit of perturbative QCD by iteratively solving the BFKL equation. This allows us to predict the imaginary part of the amplitude to leading-logarithmic order for arbitrary t-channel colour exchange. The corrections we compute correspond to ladder diagrams with any number of rungs formed between two Reggeized gluons. Our approach exploits a separation of the two-Reggeon wavefunction, performed directly in momentum space, between a soft region and a generic (hard) region. The former component of the wavefunction leads to infrared divergences in the amplitude and is therefore computed in dimensional regularization; the latter is computed directly in two transverse dimensions and is expressed in terms of single-valued harmonic polylogarithms of uniform weight. By combining the two we determine exactly both infrared-divergent and finite contributions to the two-to-two scattering amplitude order-by-order in perturbation theory. We study the result numerically to 13 loops and find that finite corrections to the amplitude have a finite radius of convergence which depends on the colour representation of the t-channel exchange.


Sign in / Sign up

Export Citation Format

Share Document