scholarly journals MRDRL-ROS: a Multi Robot Deep Reinforcement Learning Platform based on Robot Operating System

2021 ◽  
Vol 2113 (1) ◽  
pp. 012086
Author(s):  
Zhongxuan Cai ◽  
Zhen Liang ◽  
Jing Ren

Abstract Deep reinforcement learning (DRL) has greatly improved the intelligence of AI in recent years and the community has proposed several common software to facilitate the development of DRL. However, in robotics the utility of common DRL software is limited and the development is time-consuming due to the complexity of various robot software. In this paper, we propose a software engineering approach leveraging modularity to facilitate robot DRL development. The platform decouples learning environment into task, simulator and hierarchical robot modules, which in turn enables diverse environment generation using existing modules as building blocks, regardless of the underlying robot software details. Experimental results show that our platform provides composable environment building, introduces high module reuse and efficiently facilitates robot DRL.

Author(s):  
Varuna Eswer ◽  
Sanket Suresh Naik Dessai

Efficiency of a processor is a critical factor for an embedded system. One of the deciding factors for efficiency is the functioning of the L1 cache and Translation Lookaside Buffer (TLB). Certain processors have the L1 cache and TLB managed by the operating system, MIPS32 is one such processor. The performance of the L1 cache and TLB necessitates a detailed study to understand its management during varied load on the processor. This paper presents an implementation to analyse the performance of the MIPS32 processor L1 cache and TLB management by the operating system (OS) using software engineering approach. Software engineering providing better clearity for the system developemt and its performance analysis.In the initial stage if the requirement analysis for the performance measurment sort very clearly,the methodologies for the implementation becomes very economical without any ambigunity.In this paper a implementation is proposed to determine the processor performance metrics using a software engineering approach considering the counting of the respective cache and TLB management instruction execution, which is an event that is measurable with the use of dedicated counters. The lack of hardware counters in the MIPS32 processor results in the usage of software based event counters that are defined in the kernel. This paper implements a subset of MIPS32 processor performance measurement metrics using software based counters. Techniques were developed to overcome the challenges posed by the kernel source code. To facilitate better understanding of the implementation procedure of the software based processor performance counters; use-case analysis diagram, flow charts, screen shots, and knowledge nuggets are supplemented along with histograms of the cache and TLB events data generated by the proposed implementation. Twenty-seven metrics have been identified and implemented to provide data related to the events of the L1 cache and TLB on the MIPS32 processor. The generated data can be used in tuning of compiler, OS memory management design, system benchmarking, scalability, analysing architectural issues, address space analysis, understanding bus communication, kernel profiling, and workload characterisation.


Author(s):  
A. Solis ◽  
J. Hurtado

<p>Existe una tendencia a utilizar los enfoques de reutilización de software en el dominio de los sistemas robóticos industriales, con el fin de acelerar su desarrollo. Aunque algunos estudios muestran los beneficios de desarrollar usando diferentes enfoques de reutilización, estas prácticas no se han incorporado masivamente en la industria, principalmente, debido al desarrollo de software propietario por parte de los fabricantes y a la diversidad del hardware subyacente. Sin embargo, estos estudios han sido de gran valor para avanzar en su adopción. A través de un mapeo sistemático de la literatura, se muestra la adopción de los diferentes enfoques de reutilización, dentro de los cuales se analizan los más utilizados como la ingeniería dirigida por modelos MDE (Model-Driven Engineering), el desarrollo basado en componentes CBSE (Component-based Software Engineering) y la arquitectura basada en servicios (SOA). Por otro lado, se analizan los marcos de trabajo por ser las soluciones más utilizados y en términos de herramientas, se enfatiza en ROS (Robot Operating System) como una plataforma de referencia para el desarrollo rápido de aplicaciones. El principal reto identificado en esta área de estudio es definir estrategias combinadas y prácticas de los enfoques de reutilización MDE, CBSE y SOA, con el fin de aprovechar las diferentes ventajas de reutilización que cada uno ofrece.</p>


TAPPI Journal ◽  
2018 ◽  
Vol 17 (04) ◽  
pp. 231-240
Author(s):  
Douglas Coffin ◽  
Joel Panek

A transverse shear strain was utilized to characterize the severity of creasing for a wide range of tooling configurations. An analytic expression of transverse shear strain, which accounts for tooling geometry, correlated well with relative crease strength and springback as determined from 90° fold tests. The experimental results show a minimum strain (elastic limit) that needs to be exceeded for the relative crease strength to be reduced. The theory predicts a maximum achievable transverse shear strain, which is further limited if the tooling clearance is negative. The elastic limit and maximum strain thus describe the range of interest for effective creasing. In this range, cross direction (CD)-creased samples were more sensitive to creasing than machine direction (MD)-creased samples, but the differences were reduced as the shear strain approached the maximum. The presented development provides the foundation for a quantitative engineering approach to creasing and folding operations.


2018 ◽  
Author(s):  
Yi Chen ◽  
Sagar Manglani ◽  
Roberto Merco ◽  
Drew Bolduc

In this paper, we discuss several of major robot/vehicle platforms available and demonstrate the implementation of autonomous techniques on one such platform, the F1/10. Robot Operating System was chosen for its existing collection of software tools, libraries, and simulation environment. We build on the available information for the F1/10 vehicle and illustrate key tools that will help achieve properly functioning hardware. We provide methods to build algorithms and give examples of deploying these algorithms to complete autonomous driving tasks and build 2D maps using SLAM. Finally, we discuss the results of our findings and how they can be improved.


2013 ◽  
Vol 1 (3) ◽  
pp. 48-65
Author(s):  
Yuting Chen

A concurrent program is intuitively associated with probability: the executions of the program can produce nondeterministic execution program paths due to the interleavings of threads, whereas some paths can always be executed more frequently than the others. An exploration of the probabilities on the execution paths is expected to provide engineers or compilers with support in helping, either at coding phase or at compile time, to optimize some hottest paths. However, it is not easy to take a static analysis of the probabilities on a concurrent program in that the scheduling of threads of a concurrent program usually depends on the operating system and hardware (e.g., processor) on which the program is executed, which may be vary from machine to machine. In this paper the authors propose a platform independent approach, called ProbPP, to analyzing probabilities on the execution paths of the multithreaded programs. The main idea of ProbPP is to calculate the probabilities on the basis of two kinds of probabilities: Primitive Dependent Probabilities (PDPs) representing the control dependent probabilities among the program statements and Thread Execution Probabilities (TEPs) representing the probabilities of threads being scheduled to execute. The authors have also conducted two preliminary experiments to evaluate the effectiveness and performance of ProbPP, and the experimental results show that ProbPP can provide engineers with acceptable accuracy.


Sensors ◽  
2021 ◽  
Vol 21 (4) ◽  
pp. 1369
Author(s):  
Hyojun Lee ◽  
Jiyoung Yoon ◽  
Min-Seong Jang ◽  
Kyung-Joon Park

To perform advanced operations with unmanned aerial vehicles (UAVs), it is crucial that components other than the existing ones such as flight controller, network devices, and ground control station (GCS) are also used. The inevitable addition of hardware and software to accomplish UAV operations may lead to security vulnerabilities through various vectors. Hence, we propose a security framework in this study to improve the security of an unmanned aerial system (UAS). The proposed framework operates in the robot operating system (ROS) and is designed to focus on several perspectives, such as overhead arising from additional security elements and security issues essential for flight missions. The UAS is operated in a nonnative and native ROS environment. The performance of the proposed framework in both environments is verified through experiments.


2021 ◽  
Vol 37 (1--4) ◽  
pp. 1-27
Author(s):  
Yiming Zhang ◽  
Chengfei Zhang ◽  
Yaozheng Wang ◽  
Kai Yu ◽  
Guangtao Xue ◽  
...  

Unikernel specializes a minimalistic LibOS and a target application into a standalone single-purpose virtual machine (VM) running on a hypervisor, which is referred to as (virtual) appliance . Compared to traditional VMs, Unikernel appliances have smaller memory footprint and lower overhead while guaranteeing the same level of isolation. On the downside, Unikernel strips off the process abstraction from its monolithic appliance and thus sacrifices flexibility, efficiency, and applicability. In this article, we examine whether there is a balance embracing the best of both Unikernel appliances (strong isolation) and processes (high flexibility/efficiency). We present KylinX, a dynamic library operating system for simplified and efficient cloud virtualization by providing the pVM (process-like VM) abstraction. A pVM takes the hypervisor as an OS and the Unikernel appliance as a process allowing both page-level and library-level dynamic mapping. At the page level, KylinX supports pVM fork plus a set of API for inter-pVM communication (IpC, which is compatible with conventional UNIX IPC). At the library level, KylinX supports shared libraries to be linked to a Unikernel appliance at runtime. KylinX enforces mapping restrictions against potential threats. We implement a prototype of KylinX by modifying MiniOS and Xen tools. Extensive experimental results show that KylinX achieves similar performance both in micro benchmarks (fork, IpC, library update, etc.) and in applications (Redis, web server, and DNS server) compared to conventional processes, while retaining the strong isolation benefit of VMs/Unikernels.


Sign in / Sign up

Export Citation Format

Share Document