scholarly journals Variations of nanoparticle layer properties during nucleate pool boiling

2021 ◽  
Vol 2116 (1) ◽  
pp. 012002
Author(s):  
Tomio Okawa ◽  
Koki Nakano ◽  
Yutaro Umehara

Abstract The nanoparticle layer detachment during nucleate pool boiling and its influences on heat transfer surface properties were explored experimentally. The material of the heat transfer surface was copper and the nanoparticle layer was formed on the heat transfer surface by nucleate boiling in the water-based TiO2 nanofluid. It was found that the detachment of the nanoparticle layer during nucleate boiling in pure water is significant. In the present experiment, more than half of nanoparticles deposited on the heated surface were detached before the CHF condition was reached. The thickness and roughness decreased accordingly. However, the wettability and wickability that are the influential parameters on the CHF value were maintained even after the occurrence of nanoparticle layer detachment and deteriorated only after the CHF condition was reached. It is therefore considered that the onset of CHF brings qualitative change to the capillary suction performance of the layer of nanoparticles. In exploring the effect of the nanoparticle layer properties on the nucleate boiling heat transfer, sufficient attention should be paid to the variation of the nanoparticle layer properties during nucleate boiling.

2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Hyungdae Kim ◽  
Ho Seon Ahn ◽  
Moo Hwan Kim

The pool boiling characteristics of water-based nanofluids with alumina and titania nanoparticles of 0.01 vol % were investigated on a thermally heated disk heater at saturated temperature and atmospheric pressure. The results confirmed the findings of previous studies that nanofluids can significantly enhance the critical heat flux (CHF), resulting in a large increase in the wall superheat. It was found that some nanoparticles deposit on the heater surface during nucleate boiling, and the surface modification due to the deposition results in the same magnitude of CHF enhancement in pure water as for nanofluids. Subsequent to the boiling experiments, the interfacial properties of the heater surfaces were examined using dynamic wetting of an evaporating water droplet. As the surface temperature increased, the evaporating meniscus on the clean surface suddenly receded toward the liquid due to the evaporation recoil force on the liquid-vapor interface, but the nanoparticle-fouled surface exhibited stable wetting of the liquid meniscus even at a remarkably higher wall superheat. The heat flux gain attainable due to the improved wetting of the evaporating meniscus on the fouled surface showed good agreement with the CHF enhancement during nanofluid boiling. It is supposed that the nanoparticle layer increases the stability of the evaporating microlayer underneath a bubble growing on a heated surface and thus the irreversible growth of a hot/dry spot is inhibited even at a high wall superheat, resulting in the CHF enhancement observed when boiling nanofluids.


2003 ◽  
Vol 125 (6) ◽  
pp. 1087-1095 ◽  
Author(s):  
H. Louahlia-Gualous ◽  
P. K. Panday ◽  
E. A. Artioukhine

This article treats the local heat transfer for nucleate pool boiling around the cylinder using the inverse heat conduction analysis. The physical model considers a half section of a cylinder with unknown surface temperature and heat flux density. The iterative regularization and the conjugate gradient methods are used for solving the inverse analysis. The local Nusselt number profiles for nucleate pool boiling are presented and analyzed for different electric heat. The mean Nusselt number estimated by IHCP is closed with the measured values. The results of IHCP are compared to those of Cornewell and Houston (1994), Stephan and Abdelsalam (1980) and Memory et al. (1995). The influence of the error of the measured temperatures and the error in placement of the thermocouples are studied.


Author(s):  
Birce Dikici ◽  
Basim Q. A. Al-Sukaini

In this study, nucleate pool boiling of surfactant solutions are investigated. The surfactants chosen for the study are an ionic sodium lauryl sulfate (SLS), nonionic ECOSURF™ EH-14, and nonionic ECOSURF™ SA-9. It is observed that adding a small amount of surfactant alters the water boiling phenomenon considerably. Boiling curves for different concentrations are shifted to the left. The wall temperature dropped with an increase in the concentration of aqueous surfactant solutions. Also, it is found that the boiling heat transfer enhancement of SLS is higher than that of EH-14 and SA-9 compared to water. Boiling heat transfer coefficient (h) enhancements compared to water are 46%, 30%, and 21%. (for SLS, for EH-14 and for SA-9 respectively) Boiling visualization shows that boiling with surfactant solutions compared with that in pure water is more vigorous. Bubbles are smaller, activate continuously, and collapse quickly. Also, the bubble departure frequency is observed to be higher than that of pure water. Results prove that there is an important possibility to enhance the boiling application processes by environmentally friendly EH-14, and SA-9 additives. Experimentation can be extended for searching other surfactants in order to find their most efficient quantity in water for boiling heat transfer.


2012 ◽  
Vol 20 (01) ◽  
pp. 1150003 ◽  
Author(s):  
YASUYUKI TAKATA ◽  
SUMITOMO HIDAKA ◽  
MASAMICHI KOHNO

Pool boiling from a super-water-repellent (SWR) and polytetrafluoroethylene (PTFE) surface with checkered and spotted patterns has been studied experimentally. The heat transfer surfaces are copper with the SWR coating of checkered and spotted patterns and TiO2 -coated surface with PTFE spotted patterns. The domain of SWR and PTFE acts as nucleation sites and, therefore, bubble nucleation starts at very low superheating. In lower heat flux, bubbles with uniform size are generated on the SWR or PTFE domain of the heat transfer surface. These bubbles depart from the heat transfer surface when the contact line reaches the boundary of SWR or PTFE domain. Nucleate boiling with this surface was enhanced by seven times compared with the normal copper surface. The best was the spotted PTFE surface coated on TiO2 superhydrophilic surface.


Author(s):  
Chen Li ◽  
G. P. Peterson

The evaporation and pool boiling on micro porous coated surfaces have been shown to provide among the highest heat transfer rates achievable from any type of surfaces. The heat transfer modes in these surfaces, present a number of interesting similarities and also, some fundamental differences, which are the result of the liquid supply methods to the heated surface. For the evaporation from porous coated surfaces, the liquid return to the heated surface is assisted by the capillary pressure at the liquid-vapor interface; while for pool boiling, gravity is the principal driving force that rewets the surface. In order to better understand the physical phenomena that governs the flow behavior of both the liquid and vapor phases, and the heat transfer process inside the porous media, comprehensive comparisons between these return mechanisms and their respective characteristics, and the performance and the critical heat flux (CHF) for each have been made, based on similar physical situations. These systematic comparisons illustrate that at a lower heat flux, the evaporation and pool boiling curves are almost identical due to the similar heat transfer modes, i.e., convection and nucleate boiling. While with further increases in heat flux, the heat transfer performance of the evaporation on micro porous media is generally superior to pool boiling on an identical surface. This shift is believed to be due to the fact that for evaporation on micro porous media, the heat transfer mode is dominated by the film evaporation, while in pool boiling, it is principally the result of fully developed nucleate boiling. It was also observed that the impact of the effective thermal conductivity of the porous coating on pool boiling performance is larger than for evaporation heat transfer on the identical micro porous coated surfaces. In general, the experimental data indicated that the CHF for evaporation heat transfer is much higher than for pool boiling on the same surfaces. The mechanism of CHF for evaporation on porous coated surfaces is believed to be the capillary limit; while for pool boiling the limit is the result of the hydrodynamic instabilities. This difference in mechanisms is clearly demonstrated by the experimental observations, where initially, the dry out process of the porous coated surfaces during evaporation is gradual, while for pool boiling; the entire surface reaches dry out in a very short time. In addition, the sensitivity of the CHF to the thickness of the porous coatings at a constant volumetric porosity and pore size, as well as the various optimal volumetric porosity of the CHF at a given thickness, are clearly the results of the differences induced by the various CHF mechanisms.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3893
Author(s):  
Mohd Danish ◽  
Mohammed K. Al Mesfer ◽  
Khursheed B. Ansari ◽  
Mudassir Hasan ◽  
Abdelfattah Amari ◽  
...  

In the current work, the heat flux in nucleate pool boiling has been predicted using the macrolayer and latent heat evaporation model. The wall superheat (ΔT) and macrolayer thickness (δ) are the parameters considered for predicting the heat flux. The influence of operating parameters on instantaneous conduction heat flux and average heat flux across the macrolayer are investigated. A comparison of the findings of current model with Bhat’s decreasing macrolayer model revealed a close agreement under the nucleate pool boiling condition at high heat flux. It is suggested that conduction heat transfer strongly rely on macrolayer thickness and wall superheat. The wall superheat and macrolayer thickness is found to significantly contribute to conduction heat transfer. The predicted results closely agree with the findings of Bhat’s decreasing macrolayer model for higher values of wall superheat signifying the nucleate boiling. The predicted results of the proposed model and Bhat’s existing model are validated by the experimental data. The findings also endorse the claim that predominant mode of heat transfer from heater surface to boiling liquid is the conduction across the macrolayer at the significantly high heat flux region of nucleate boiling.


Author(s):  
K-J Park ◽  
D Jung ◽  
S E Shim

In this work, nucleate pool boiling heat transfer coefficients (HTCs) of five refrigerants of differing vapour pressures are measured on a horizontal, smooth copper surface of 9.53×9.53 mm. The tested refrigerants are R123, R152a, R134a, R22, and R32 and HTCs are taken from 10 kW/m2 to the critical heat flux (CHF) of each refrigerant. Wall and fluid temperatures are measured directly by thermocouples located underneath the test surface and in the liquid pool, respectively. Test results show that nucleate pool boiling HTCs of halogenated refrigerants increase as the heat flux and vapour pressure increase. This typical trend is maintained even at high heat fluxes above 200 kW/m2. Zuber's prediction equation for CHF is quite accurate showing a maximum deviation of 21 per cent for all refrigerants tested. For all refrigerants, Stephan and Abdelsalam's well-known correlation underpredicted nucleate boiling HTC data up to the CHF with an average deviation of 21.3 per cent, while Cooper's correlation overpredicted the data with an average deviation of 14.2 per cent. On the other hand, Gorenflo's and Jung et al.'s correlations showed 5.8 and 6.4 per cent deviations, respectively, in the entire nucleate boiling range up to the CHF.


Processes ◽  
2019 ◽  
Vol 7 (10) ◽  
pp. 726
Author(s):  
Mohd Danish ◽  
Mohammed Al Mesfer

A mathematical model has been developed for heat exchange in nucleate boiling at high flux applying an energy balance on a macrolayer. The wall superheat, macrolayer thickness, and time are the parameters considered for predicting the heat flux. The influence of the wall superheat and macrolayer thickness on average heat flux has been predicted. The outcomes of the current model have been compared with Bhat’s constant macrolayer model, and it was found that these models are in close agreement corresponding to the nucleate pool boiling regime. It was concluded that the wall superheat and macrolayer thickness contributed significantly to conduction heat transfer. The average conduction heat fluxes predicted by the current model and by Bhat’s model are in close agreement for a thinner macrolayer of approximately 50 µm. For higher values of the wall superheat, which corresponds to the nucleate pool boiling condition, the predicted results strongly agree with the results of Bhat’s model. The findings also validate the claim that conduction across the macrolayer accounts for the main heat transfer mode from the heater surface to boiling liquid at high heat flux in nucleate pool boiling.


Sign in / Sign up

Export Citation Format

Share Document