scholarly journals Dynamic LES of the magnetohydrodynamic flow in a square duct with the varied wall conductance parameters

2021 ◽  
Vol 2116 (1) ◽  
pp. 012036
Author(s):  
A Blishchik ◽  
S Kenjereš

Abstract The current study is focused on the magnetohydrodynamics and demonstrates how electrical conductivity of the wall can affect the turbulent flow in the square duct. Different variations of the boundary walls have been considered including arbitrary conductive walls. The Large Eddy Simulations method with the dynamic Smagorinsky sub-grid scale model have been used for the turbulent structures resolving. Results show the significant impact of the wall conductance parameters for both Hartmann and side walls.

2000 ◽  
Vol 12 (11) ◽  
pp. 2878 ◽  
Author(s):  
J. Pallares ◽  
L. Davidson

Author(s):  
Sushrut Kumar ◽  
Ujjwal Suri ◽  
Paras Sachdeva ◽  
Raj Kumar Singh

Abstract The present paper studies the characteristics of a fully turbulent flow of water through a conduit by use of corrugated structures. Methodologies including rough-ribbed walls and particle injection have been utilized for turbulence attenuation in the past. Screens and corrugations are yet another effective tools for reducing turbulence. The proposed investigation focuses on the application of square and hexagonal cross-sectional corrugations which are introduced in the flow for turbulence attenuation inside rectangular conduits. Large Eddy Simulations in three dimensions were performed with OpenFOAM using a pressure-implicit solver and the standard Smagorinsky subgrid-scale model. Dampening of the spanwise velocity component and a relative increase in streamwise velocity component downstream of the corrugation was observed. The power spectral densities (PSD) of the flow upstream and downstream of the corrugation were examined and compared. A significant decrease in turbulent flow power density was observed. Furthermore, characteristics including turbulence intensity contours and isosurfaces of the Q-criterion were visualized. The results conclusively indicate a subsequent decrease in the turbulent nature of flow past corrugated structures.


Author(s):  
N Kharoua ◽  
L Khezzar

Large eddy simulation of turbulent flow around smooth and rough hemispherical domes was conducted. The roughness of the rough dome was generated by a special approach using quadrilateral solid blocks placed alternately on the dome surface. It was shown that this approach is capable of generating the roughness effect with a relative success. The subgrid-scale model based on the transport of the subgrid turbulent kinetic energy was used to account for the small scales effect not resolved by large eddy simulation. The turbulent flow was simulated at a subcritical Reynolds number based on the approach free stream velocity, air properties, and dome diameter of 1.4 × 105. Profiles of mean pressure coefficient, mean velocity, and its root mean square were predicted with good accuracy. The comparison between the two domes showed different flow behavior around them. A flattened horseshoe vortex was observed to develop around the rough dome at larger distance compared with the smooth dome. The separation phenomenon occurs before the apex of the rough dome while for the smooth dome it is shifted forward. The turbulence-affected region in the wake was larger for the rough dome.


Author(s):  
Charlie Koupper ◽  
Jean Lamouroux ◽  
Stephane Richard ◽  
Gabriel Staffelbach

In a gas turbine, the combustor is feeding the turbine with hot gases at a high level of turbulence which in turns strongly enhances the heat transfer in the turbine. It is thus of primary importance to properly characterize the turbulence properties found at the exit of a combustor to design the turbine at its real thermal constraint. This being said, real engine measurements of turbulence are extremely rare if not inexistent because of the harsh environment and difficulty to implement experimental techniques that usually operate at isothermal conditions (e.g. hot wire anemometry). As a counterpart, high fidelity unsteady numerical simulations using Large Eddy Simulations (LES) are now mature enough to simulate combustion processes and turbulence within gas turbine combustors. It is thus proposed here to assess the LES methodology to qualify turbulence within a real helicopter engine combustor operating at take-off conditions. In LES, the development of turbulence is primarily driven by the level of real viscosity in the calculation, which is the sum of three contributions: laminar (temperature linked), turbulent (generated by the sub-grid scale model) and artificial (numerics dependent). In this study, the impact of the two main sources of un-desired viscosity is investigated: the mesh refinement and numerical scheme. To do so, three grids containing 11, 33 and 220 million cells for a periodic sector of the combustor are tested as well as centred second (Lax-Wendroff) and third order (TTGC) in space schemes. The turbulence properties (intensity and integral scales) are evaluated based on highly sampled instantaneous solutions and compared between the available simulations. Results show first that the duration of the simulation is important to properly capture the level of turbulence. If short simulations (a few combustor through-times) may be sufficient to evaluate the turbulence intensity, a bias up to 14% is introduced for the turbulence length scales. In terms of calculation set-up, the mesh refinement is found to have a limited influence on the turbulence properties. The numerical scheme influence on the quantities studied here is small, highlighting that the employed schemes dissipation properties are already sufficient for turbulence characterization. Finally, spatially averaged values of turbulence intensity and lengthscale at the combustor exit are almost identically predicted in all cases. However, significant variations from hub to tip are reported, which questions the pertinence to use 0-D turbulence boundary conditions for turbines. Based on the set of simulations discussed in the paper, guidelines can be derived to adequately set-up (mesh, scheme) and run (duration, acquisition frequency) a LES when turbulence evaluation is concerned. As no experimental counterpart to this study is available, the conclusions mainly aim at knowing the possible numerical bias rather than commenting on the predictivity of the approach.


Sign in / Sign up

Export Citation Format

Share Document